A differential dynamic programming framework for inverse reinforcement learning
A differential dynamic programming (DDP)-based framework for inverse reinforcement learning (IRL) is introduced to recover the parameters in the cost function, system dynamics, and constraints from demonstrations. Different from existing work, where DDP was used for the inner forward problem with...
Saved in:
Main Authors: | Cao, Kun, Xu, Xinhang, Jin, Wanxin, Johansson, Karl H., Xie, Lihua |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181965 http://arxiv.org/abs/2407.19902v1 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
TOWARDS HUMAN-CENTRIC AI: INVERSE REINFORCEMENT LEARNING MEETS ALGORITHMIC FAIRNESS
由: SREEJITH BALAKRISHNAN
出版: (2023) -
DIRECT: a differential dynamic programming based framework for trajectory generation
由: Cao, Kun, et al.
出版: (2022) -
NPE-DRL: enhancing perception constrained obstacle avoidance with non-expert policy guided reinforcement learning
由: Zhang, Yuhang, et al.
出版: (2024) -
SCALES: From Fairness Principles to Constrained Decision-Making
由: Balakrishnan, Sreejith, et al.
出版: (2022) -
Subspace-based optimization method for solving inverse-scattering problems
由: Chen, X.
出版: (2014)