Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.

Peripheral insulin resistance is one of the defining characteristics of type 2 diabetes - a metabolic disorder commonly associated with oxidative stress. Obesity and exposure to atmospheric oxidants, such as ozone gas, induces oxidative stress which increases lipid peroxidation. However, it is still...

Full description

Saved in:
Bibliographic Details
Main Author: Chionh, Yok Hian.
Other Authors: School of Biological Sciences
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/18971
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-18971
record_format dspace
spelling sg-ntu-dr.10356-189712023-02-28T18:00:46Z Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts. Chionh, Yok Hian. School of Biological Sciences Christophe Soulage DRNTU::Science::Biological sciences::Biochemistry Peripheral insulin resistance is one of the defining characteristics of type 2 diabetes - a metabolic disorder commonly associated with oxidative stress. Obesity and exposure to atmospheric oxidants, such as ozone gas, induces oxidative stress which increases lipid peroxidation. However, it is still unclear how major lipid peroxidation end products, 4-hydroxy-2-nonenal (HNE) and 4-hydroxy-2-hexenal (HHE) disrupt insulin signaling in muscles. Furthermore, the lack of appropriate models and common measurements has hampered inferences from being drawn from in vivo and in vitro experiments. Exposure of Wistar rats to ozone and incubation of rat L6 myoblasts with non-toxic concentrations of HHE or HNE revealed that in both cases cellular carbonylation levels were significantly increased. In addition, HNE and HHE-Micheal adducts were detected in immunoblots of L6 cell lysate. Though both HHE and HNE were able to impair glucose uptake in response to insulin in L6 cells and antioxidative pre-treatment of L6 cells with N-acetyl-cysteine (NAC) or 3H-1,2-dithiole-3-thione (D3T) successfully prevented oxidative damage in the form of HHE or HNE adduct formation in L6 cells, we have curiously found that HHE unlike HNE was neither able to decrease insulin receptor substrate (IRS)-1 tyrosine phoshorylation nor prevent the recruitment of phosphoinositide 3-kinases (PI3k). Put together, our results suggests that carbonylation is common in various forms of oxidative stresses and that HHE and HNE affect different members of the insulin signaling cascade. Bachelor of Science in Biological Sciences 2009-08-26T02:10:30Z 2009-08-26T02:10:30Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/18971 en Nanyang Technological University 30 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences::Biochemistry
spellingShingle DRNTU::Science::Biological sciences::Biochemistry
Chionh, Yok Hian.
Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.
description Peripheral insulin resistance is one of the defining characteristics of type 2 diabetes - a metabolic disorder commonly associated with oxidative stress. Obesity and exposure to atmospheric oxidants, such as ozone gas, induces oxidative stress which increases lipid peroxidation. However, it is still unclear how major lipid peroxidation end products, 4-hydroxy-2-nonenal (HNE) and 4-hydroxy-2-hexenal (HHE) disrupt insulin signaling in muscles. Furthermore, the lack of appropriate models and common measurements has hampered inferences from being drawn from in vivo and in vitro experiments. Exposure of Wistar rats to ozone and incubation of rat L6 myoblasts with non-toxic concentrations of HHE or HNE revealed that in both cases cellular carbonylation levels were significantly increased. In addition, HNE and HHE-Micheal adducts were detected in immunoblots of L6 cell lysate. Though both HHE and HNE were able to impair glucose uptake in response to insulin in L6 cells and antioxidative pre-treatment of L6 cells with N-acetyl-cysteine (NAC) or 3H-1,2-dithiole-3-thione (D3T) successfully prevented oxidative damage in the form of HHE or HNE adduct formation in L6 cells, we have curiously found that HHE unlike HNE was neither able to decrease insulin receptor substrate (IRS)-1 tyrosine phoshorylation nor prevent the recruitment of phosphoinositide 3-kinases (PI3k). Put together, our results suggests that carbonylation is common in various forms of oxidative stresses and that HHE and HNE affect different members of the insulin signaling cascade.
author2 School of Biological Sciences
author_facet School of Biological Sciences
Chionh, Yok Hian.
format Final Year Project
author Chionh, Yok Hian.
author_sort Chionh, Yok Hian.
title Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.
title_short Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.
title_full Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.
title_fullStr Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.
title_full_unstemmed Carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in L6 myoblasts.
title_sort carbonylation is a hallmark of oxidative stress induced by lipid peroxidation products, 4-hydroxy-2-nonenal and 4-hydroxy-2- hexenal, on insulin signalling in l6 myoblasts.
publishDate 2009
url http://hdl.handle.net/10356/18971
_version_ 1759857094973980672