Measurement of stress evolution in pulse-reverse electrochemical deposition using Micro-Raman Spectroscopy

Nowadays, copper deposit is extensively used in microelectronic applications, because the electroplated copper exhibits excellent electrical conductivity along with high hardness. in the resent literature, it is known that copper electroplated with pulse reverse current produces larger hardness than...

全面介紹

Saved in:
書目詳細資料
主要作者: Yang, Qi Hua
其他作者: Miao Jianmin
格式: Final Year Project
語言:English
出版: 2011
主題:
在線閱讀:http://hdl.handle.net/10356/45821
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Nowadays, copper deposit is extensively used in microelectronic applications, because the electroplated copper exhibits excellent electrical conductivity along with high hardness. in the resent literature, it is known that copper electroplated with pulse reverse current produces larger hardness than that by DC (direct current) plating or PC (pulse current)plating. The residual stress is introduced from the copper electroplating process. It shows an increasing tension stress profile. And the stress in the copper layer is higher than that in the silicon layer. With an additive free electrolyte, the stress increased to around 40 Mpa, while it was about 200 Mpa in copper deposit. Compare with it, the stress became lower if the organic additive for brightening added into the electrolyte.