Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation

This thesis presents a comprehensive study combining electrical characterization, physical analysis, and atomistic simulation on the mechanism of resistive switching. The metal-insulator-semiconductor (MIS) stack based on conventional transistor was used in this study as an effective test structure...

Full description

Saved in:
Bibliographic Details
Main Author: Wu, Xing
Other Authors: Bai Ping
Format: Theses and Dissertations
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/50666
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-50666
record_format dspace
spelling sg-ntu-dr.10356-506662023-07-04T16:59:42Z Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation Wu, Xing Bai Ping Zhang Gang Navab Singh Pey Kin Leong School of Electrical and Electronic Engineering Microelectronics Centre DRNTU::Engineering::Electrical and electronic engineering This thesis presents a comprehensive study combining electrical characterization, physical analysis, and atomistic simulation on the mechanism of resistive switching. The metal-insulator-semiconductor (MIS) stack based on conventional transistor was used in this study as an effective test structure to understand the chemical origin of switching behavior in the metal-insulator-metal (MIM) stack. The objective of this thesis is to understand the fundamental mechanism governing the nucleation and rupture of the nanosized conductive filaments in resistive random-access memory (RRAM). To study the chemistry of the localized nanoscale conductive path, electrical characterization techniques were employed to pinpoint the location of the conductive path, then advanced nanoscale analysis tools such as transmission electron microscopy (TEM) along with electron energy loss spectroscopy (EELS) were used to study the elemental composition of the conductive path; finally first-principles calculations were used to further understand the band structure change of the switching material. It is found that the conductive filament consists of oxygen vacancies and the metal filament. There are two stages for the formation of the conductive filament: the initial stage, which is commonly referred to as the soft breakdown stage in MIS gate stack reliability study where the oxygen vacancies are the physical defects responsible for the formation of a percolation path; In the second stage, the metal atoms from the top gate electrode migrate along the oxygen deficient breakdown path driven by the high current density and temperature enhanced metal atom diffusion, forming a metal-rich filament at the central core of the breakdown spot. For the ruptured conductive filament, our physical analysis results show that metal fragments still remain in the dielectric even after the conductive filaments have been electrically switched-off. It is very likely that the residual metal in the dielectric bonds with the O2- ions forming an insulator. DOCTOR OF PHILOSOPHY (EEE) 2012-08-27T07:21:48Z 2012-08-27T07:21:48Z 2012 2012 Thesis Wu, X. (2012). Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/50666 10.32657/10356/50666 en 147 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Wu, Xing
Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation
description This thesis presents a comprehensive study combining electrical characterization, physical analysis, and atomistic simulation on the mechanism of resistive switching. The metal-insulator-semiconductor (MIS) stack based on conventional transistor was used in this study as an effective test structure to understand the chemical origin of switching behavior in the metal-insulator-metal (MIM) stack. The objective of this thesis is to understand the fundamental mechanism governing the nucleation and rupture of the nanosized conductive filaments in resistive random-access memory (RRAM). To study the chemistry of the localized nanoscale conductive path, electrical characterization techniques were employed to pinpoint the location of the conductive path, then advanced nanoscale analysis tools such as transmission electron microscopy (TEM) along with electron energy loss spectroscopy (EELS) were used to study the elemental composition of the conductive path; finally first-principles calculations were used to further understand the band structure change of the switching material. It is found that the conductive filament consists of oxygen vacancies and the metal filament. There are two stages for the formation of the conductive filament: the initial stage, which is commonly referred to as the soft breakdown stage in MIS gate stack reliability study where the oxygen vacancies are the physical defects responsible for the formation of a percolation path; In the second stage, the metal atoms from the top gate electrode migrate along the oxygen deficient breakdown path driven by the high current density and temperature enhanced metal atom diffusion, forming a metal-rich filament at the central core of the breakdown spot. For the ruptured conductive filament, our physical analysis results show that metal fragments still remain in the dielectric even after the conductive filaments have been electrically switched-off. It is very likely that the residual metal in the dielectric bonds with the O2- ions forming an insulator.
author2 Bai Ping
author_facet Bai Ping
Wu, Xing
format Theses and Dissertations
author Wu, Xing
author_sort Wu, Xing
title Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation
title_short Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation
title_full Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation
title_fullStr Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation
title_full_unstemmed Nanoscale characterization of resistive switching phenomena in HFO2-based stacks using transmission electron microscopy and atomistic simulation
title_sort nanoscale characterization of resistive switching phenomena in hfo2-based stacks using transmission electron microscopy and atomistic simulation
publishDate 2012
url https://hdl.handle.net/10356/50666
_version_ 1772826621019947008