Development of a micro guidance, navigation control system for quadcopters

To develop a guidance and navigation of a Micro Aerial Vehicle (MAV) system, a high performance autopilot module called Pixhawk was adopted throughout the project which allows the ease of implementing existing localization methodologies onto its flight control stack, PX4. These developments were ess...

Full description

Saved in:
Bibliographic Details
Main Author: Ng, Jason Kee Teck
Other Authors: Xie Lihua
Format: Final Year Project
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/63909
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-63909
record_format dspace
spelling sg-ntu-dr.10356-639092023-07-07T15:59:57Z Development of a micro guidance, navigation control system for quadcopters Ng, Jason Kee Teck Xie Lihua School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering To develop a guidance and navigation of a Micro Aerial Vehicle (MAV) system, a high performance autopilot module called Pixhawk was adopted throughout the project which allows the ease of implementing existing localization methodologies onto its flight control stack, PX4. These developments were essential in providing information on the quad’s position with respect to an unknown environment or to determine a path for navigating the quad through obstacles within a GPS-denied environment. The report provides an inside view of how two different localization techniques were adopted, interfaced through an on-board embedded computer system, providing essential pose estimation measurements to the quad. A simulation program was implemented based on the Simultaneous Localization and Mapping (SLAM) techniqure in which it acquired a laser range finder and several ROS packages to link up the laser data that was obtained with a local map planner. The laser data was used to develop a pose estimation of the quad in relation to an area that was being scanned. Besides that, it was able to map out the unknown environment in a visualization tool called rviz. With rviz, a path planning process could be initiated for guiding the quad in achieving autonomous navigation capability in an unknown environment. The MAVLink extendable communication node for ROS packages known as MAVROS was established as the main communication link between the ROS operated SLAM packages and the MAVLink supported Pixhawk autopilot system It allows various control setpoints to be encoded in MAVLink messages before sending over to Pixhawk for further processing. The report will provide an extensive detail on how a set of pre-defined position setpoints could be sent to the Pixhawk via the MAVROS and subsequently publishing these setpoints on a ground control station. The Ultra-Wide Band (UWB) was implemented to produce a pose estimation of the quad with respect to a pre-defined space or coordinate system. An algorithm was implemented which utilized the Euler’s rotation theorem to perform frame transformation from the UWB Cartesian coordinate system to an earth-fixed North-East-Down (NED) coordinate system; the reference frame adopted by Pixhawk. Bachelor of Engineering 2015-05-20T03:40:11Z 2015-05-20T03:40:11Z 2015 2015 Final Year Project (FYP) http://hdl.handle.net/10356/63909 en Nanyang Technological University 86 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Ng, Jason Kee Teck
Development of a micro guidance, navigation control system for quadcopters
description To develop a guidance and navigation of a Micro Aerial Vehicle (MAV) system, a high performance autopilot module called Pixhawk was adopted throughout the project which allows the ease of implementing existing localization methodologies onto its flight control stack, PX4. These developments were essential in providing information on the quad’s position with respect to an unknown environment or to determine a path for navigating the quad through obstacles within a GPS-denied environment. The report provides an inside view of how two different localization techniques were adopted, interfaced through an on-board embedded computer system, providing essential pose estimation measurements to the quad. A simulation program was implemented based on the Simultaneous Localization and Mapping (SLAM) techniqure in which it acquired a laser range finder and several ROS packages to link up the laser data that was obtained with a local map planner. The laser data was used to develop a pose estimation of the quad in relation to an area that was being scanned. Besides that, it was able to map out the unknown environment in a visualization tool called rviz. With rviz, a path planning process could be initiated for guiding the quad in achieving autonomous navigation capability in an unknown environment. The MAVLink extendable communication node for ROS packages known as MAVROS was established as the main communication link between the ROS operated SLAM packages and the MAVLink supported Pixhawk autopilot system It allows various control setpoints to be encoded in MAVLink messages before sending over to Pixhawk for further processing. The report will provide an extensive detail on how a set of pre-defined position setpoints could be sent to the Pixhawk via the MAVROS and subsequently publishing these setpoints on a ground control station. The Ultra-Wide Band (UWB) was implemented to produce a pose estimation of the quad with respect to a pre-defined space or coordinate system. An algorithm was implemented which utilized the Euler’s rotation theorem to perform frame transformation from the UWB Cartesian coordinate system to an earth-fixed North-East-Down (NED) coordinate system; the reference frame adopted by Pixhawk.
author2 Xie Lihua
author_facet Xie Lihua
Ng, Jason Kee Teck
format Final Year Project
author Ng, Jason Kee Teck
author_sort Ng, Jason Kee Teck
title Development of a micro guidance, navigation control system for quadcopters
title_short Development of a micro guidance, navigation control system for quadcopters
title_full Development of a micro guidance, navigation control system for quadcopters
title_fullStr Development of a micro guidance, navigation control system for quadcopters
title_full_unstemmed Development of a micro guidance, navigation control system for quadcopters
title_sort development of a micro guidance, navigation control system for quadcopters
publishDate 2015
url http://hdl.handle.net/10356/63909
_version_ 1772827238039814144