Trajectory generation with collision avoidance for quadrotor UAVs

Unmanned Aerial Vehicles (UAVs) have found more prevalence in today’s world, especially in the field of military intelligence and defence. More recently, UAVs have also become a form of expensive hobby. This report introduce multi-copters, a branch within the broader section of the UAVs. It analyses...

Full description

Saved in:
Bibliographic Details
Main Author: M K Abdul Khuddoos
Other Authors: Wang Jianliang
Format: Final Year Project
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/65797
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Unmanned Aerial Vehicles (UAVs) have found more prevalence in today’s world, especially in the field of military intelligence and defence. More recently, UAVs have also become a form of expensive hobby. This report introduce multi-copters, a branch within the broader section of the UAVs. It analyses various multi-copters, focusing particularly on hex-rotors. The report’s fundamental objective serves to explain the collision avoidance system in UAVs, particularly hex-rotors. Thus, the report will focus on an algorithm layout for the overall trajectory path of the hex-rotor which shall enable collision avoidance. The focus will then shift to sensors, which form an important aspect of the project. Sensors help to detect the obstacles by relaying the distance from the obstacle. Common hex-rotor platforms such as Ardu-Copter and control boards such as APM and Pixhawk will also be covered. The latter stages of the report will detail experimental procedures that were conducted to output sensor data and an overall code to detect obstacles with the help of GPS. The report also covers the Arduino platform. Eventually, the report will end by concluding on the various aspects of the project along with recommendations for the future. Overall, the report summarises from scratch the process and procedures involved to enable collision avoidance in an UAV.