Object recognition and pose estimation in robotic grasping system
Currently, the warehouse automation technology is experiencing rapid growth to satisfy the increasing demand of e-commerce and provide fast, reliable delivery. Automation of the warehouse item-picking task requires the robust vision that identifies and locates objects amid cluttered environments, ma...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/75818 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Currently, the warehouse automation technology is experiencing rapid growth to satisfy the increasing demand of e-commerce and provide fast, reliable delivery. Automation of the warehouse item-picking task requires the robust vision that identifies and locates objects amid cluttered environments, massive varieties of items and sensor noise. In this report, we present a perception system which combines deep learning and 3D shape matching techniques to overcome those difficulties. Specifically, two problems addressed in the system are: i) identification and segmentation of the objects in the scene images with a fully convolutional neural network called YOLO, and ii) determination of the objects’ 6D poses by performing geometry-based methods on the point clouds. In the end, a pick-and-place system is constructed by integrating the perception module with a motion planning module. By doing some experiments, we demonstrate that our system can reliably estimate the 6D poses of objects under a tabletop scenario. |
---|