Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)

For higher frequency operation, the device such as high electron mobility transistor (HEMT) needs to be scaled down by reducing the gate length. However, in the case of high voltage operation with reduced gate length, the high concentration of two-dimensional electron gas (2DEG) obtained in the HEMT...

Full description

Saved in:
Bibliographic Details
Main Author: Seah, Alex Tian Long
Other Authors: K. Radhakrishnan
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/76016
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-76016
record_format dspace
spelling sg-ntu-dr.10356-760162023-07-04T15:56:18Z Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT) Seah, Alex Tian Long K. Radhakrishnan School of Electrical and Electronic Engineering Dharmarasu Nethaji DRNTU::Engineering::Electrical and electronic engineering For higher frequency operation, the device such as high electron mobility transistor (HEMT) needs to be scaled down by reducing the gate length. However, in the case of high voltage operation with reduced gate length, the high concentration of two-dimensional electron gas (2DEG) obtained in the HEMT epistructures may spill over from the quantum well to the GaN buffer which may lead to the decrease in peak currents and RF power densities. AlGaN back barrier in AlGaN/GaN double heterostructure (DH-HEMT) helps to confine the 2DEG to increase the frequency bandwidth of HEMTs. This dissertation describes about the growth and characterization of AlGaN/GaN DH-HEMT on Si using metal organic chemical vapour deposition (MOCVD) process. The wafer bow, surface morphology and electrical characterization such as 2DEG properties, DC characteristics and buffer leakage were done on AlGaN/GaN DH-HEMT epistructure and compared with AlGaN/GaN single heterostructure HEMT (SH-HEMT) epistructure. AlN nucleation layer was grown on Si substrate and step graded AlGaN layer was grown subsequently to compensate the lattice mismatch between AlN and GaN and prevent cracking. Crystal quality of GaN buffer layer was fine-tuned by varying growth temperature, V/III ratio and growth pressure. AlGaN barrier layer and GaN cap layer were optimized to give good 2DEG electrical properties. Coalesced and smooth GaN surface with RMS roughness of 0.3 nm was achieved and surface was observed to be slip plane and crack-free with bow < 20 μm. Contactless Hall was done on the AlGaN/GaN SH-HEMT to measure the 2DEG electrical properties. The sheet resistance, mobility and sheet carrier density were measured to be 459 Ω/sq, 1244 cm2/V.s and 1.09 x 1013 cm-2 respectively. Good 2DEG characteristics together with controlled bowing of AlGaN/GaN SH-HEMT epistructure on Si was achieved. AlGaN/GaN DH-HEMT epistructure with AlGaN back barrier was grown and studied. Similar to AlGaN/GaN SH-HEMT epistructure, AlN nucleation layer was grown on Si substrate and step graded AlGaN buffer layers were subsequently grown. A 1000 nm thick AlGaN back barrier with Al composition of 6 % was grown on the step graded AlGaN layers and good channel current was achieved using 200 nm thick GaN channel. Al composition of AlGaN barrier was kept to 31 % with 15 nm AlGaN barrier thickness. Average sheet resistance, mobility and sheet carrier density of 389 Ω/sq, 1135 cm2/V.s and 1.42 × 1013 cm-2 were obtained. The Idmax of around 700 mA/mm was lower in AlGaN/GaN DH-HEMT as compared to Idmax of around 853 mA/mm measured in AlGaN/GaN SH-HEMT. Lower buffer leakage for AlGaN/GaN DH-HEMT was achieved as compared to AlGaN/GaN SH-HEMT and this is a good indication for higher buffer breakdown. Thus, AlGaN/GaN DH-HEMT epistructure exhibited better device performances in terms of lower buffer leakage. Master of Science (Electronics) 2018-09-18T05:15:53Z 2018-09-18T05:15:53Z 2018 Thesis http://hdl.handle.net/10356/76016 en 73 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Seah, Alex Tian Long
Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)
description For higher frequency operation, the device such as high electron mobility transistor (HEMT) needs to be scaled down by reducing the gate length. However, in the case of high voltage operation with reduced gate length, the high concentration of two-dimensional electron gas (2DEG) obtained in the HEMT epistructures may spill over from the quantum well to the GaN buffer which may lead to the decrease in peak currents and RF power densities. AlGaN back barrier in AlGaN/GaN double heterostructure (DH-HEMT) helps to confine the 2DEG to increase the frequency bandwidth of HEMTs. This dissertation describes about the growth and characterization of AlGaN/GaN DH-HEMT on Si using metal organic chemical vapour deposition (MOCVD) process. The wafer bow, surface morphology and electrical characterization such as 2DEG properties, DC characteristics and buffer leakage were done on AlGaN/GaN DH-HEMT epistructure and compared with AlGaN/GaN single heterostructure HEMT (SH-HEMT) epistructure. AlN nucleation layer was grown on Si substrate and step graded AlGaN layer was grown subsequently to compensate the lattice mismatch between AlN and GaN and prevent cracking. Crystal quality of GaN buffer layer was fine-tuned by varying growth temperature, V/III ratio and growth pressure. AlGaN barrier layer and GaN cap layer were optimized to give good 2DEG electrical properties. Coalesced and smooth GaN surface with RMS roughness of 0.3 nm was achieved and surface was observed to be slip plane and crack-free with bow < 20 μm. Contactless Hall was done on the AlGaN/GaN SH-HEMT to measure the 2DEG electrical properties. The sheet resistance, mobility and sheet carrier density were measured to be 459 Ω/sq, 1244 cm2/V.s and 1.09 x 1013 cm-2 respectively. Good 2DEG characteristics together with controlled bowing of AlGaN/GaN SH-HEMT epistructure on Si was achieved. AlGaN/GaN DH-HEMT epistructure with AlGaN back barrier was grown and studied. Similar to AlGaN/GaN SH-HEMT epistructure, AlN nucleation layer was grown on Si substrate and step graded AlGaN buffer layers were subsequently grown. A 1000 nm thick AlGaN back barrier with Al composition of 6 % was grown on the step graded AlGaN layers and good channel current was achieved using 200 nm thick GaN channel. Al composition of AlGaN barrier was kept to 31 % with 15 nm AlGaN barrier thickness. Average sheet resistance, mobility and sheet carrier density of 389 Ω/sq, 1135 cm2/V.s and 1.42 × 1013 cm-2 were obtained. The Idmax of around 700 mA/mm was lower in AlGaN/GaN DH-HEMT as compared to Idmax of around 853 mA/mm measured in AlGaN/GaN SH-HEMT. Lower buffer leakage for AlGaN/GaN DH-HEMT was achieved as compared to AlGaN/GaN SH-HEMT and this is a good indication for higher buffer breakdown. Thus, AlGaN/GaN DH-HEMT epistructure exhibited better device performances in terms of lower buffer leakage.
author2 K. Radhakrishnan
author_facet K. Radhakrishnan
Seah, Alex Tian Long
format Theses and Dissertations
author Seah, Alex Tian Long
author_sort Seah, Alex Tian Long
title Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)
title_short Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)
title_full Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)
title_fullStr Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)
title_full_unstemmed Study of GaN-based double heterostructure high electron mobility transistor (DH-HEMT)
title_sort study of gan-based double heterostructure high electron mobility transistor (dh-hemt)
publishDate 2018
url http://hdl.handle.net/10356/76016
_version_ 1772825665191542784