Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles
Path planning and trajectory planning is an important aspect of navigation in the field of robotics and automation. It involves studying the environment space, evaluating the obstacle positions or the potential areas of danger, computing the cost and then eventually planning a route from one point t...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/77002 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-77002 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-770022023-03-03T20:23:19Z Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles Bolisetty Sai Tejaswi Mahardhika Pratama School of Computer Science and Engineering DRNTU::Engineering::Computer science and engineering Path planning and trajectory planning is an important aspect of navigation in the field of robotics and automation. It involves studying the environment space, evaluating the obstacle positions or the potential areas of danger, computing the cost and then eventually planning a route from one point to another point. During the planning of routes, the cost is aimed to be kept minimal in terms of saving time, avoiding obstacles and fewer casualties. Most literature reviews and experiments that used this approach have applied these to mobile robots so as to measure the accuracy, reliability and efficiency. This has shown great progress but with enormous research, there is another potential problem that arises. The uncertainty that lies in a real-time environment due to changes in the map, the addition of objects and changes in the orientations results in the inaccuracy of the routes planned. This aspect can be addressed through the application of reinforcement learning techniques that allows the robots to learn by itself. Therefore, the objective of this project is to test path planning algorithms and implement reinforcement learning in a simulated environment. Bachelor of Engineering (Computer Science) 2019-04-30T06:57:44Z 2019-04-30T06:57:44Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/77002 en Nanyang Technological University 45 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering |
spellingShingle |
DRNTU::Engineering::Computer science and engineering Bolisetty Sai Tejaswi Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
description |
Path planning and trajectory planning is an important aspect of navigation in the field of robotics and automation. It involves studying the environment space, evaluating the obstacle positions or the potential areas of danger, computing the cost and then eventually planning a route from one point to another point. During the planning of routes, the cost is aimed to be kept minimal in terms of saving time, avoiding obstacles and fewer casualties.
Most literature reviews and experiments that used this approach have applied these to mobile robots so as to measure the accuracy, reliability and efficiency. This has shown great progress but with enormous research, there is another potential problem that arises. The uncertainty that lies in a real-time environment due to changes in the map, the addition of objects and changes in the orientations results in the inaccuracy of the routes planned. This aspect can be addressed through the application of reinforcement learning techniques that allows the robots to learn by itself. Therefore, the objective of this project is to test path planning algorithms and implement reinforcement learning in a simulated environment. |
author2 |
Mahardhika Pratama |
author_facet |
Mahardhika Pratama Bolisetty Sai Tejaswi |
format |
Final Year Project |
author |
Bolisetty Sai Tejaswi |
author_sort |
Bolisetty Sai Tejaswi |
title |
Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
title_short |
Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
title_full |
Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
title_fullStr |
Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
title_full_unstemmed |
Reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
title_sort |
reinforcement learning in path planning and obstacle avoidance for autonomous vehicles |
publishDate |
2019 |
url |
http://hdl.handle.net/10356/77002 |
_version_ |
1759855406418493440 |