Driving Timing Convergence of FPGA Designs through Machine Learning and Cloud Computing
Machine learning and cloud computing techniques can help accelerate timing closure for FPGA designs without any modification to original RTL code. RTL is generally frozen closer to system delivery target to avoid injecting new unforeseen bugs or significantly affecting design characteristics. In the...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2015
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/81244 http://hdl.handle.net/10220/39167 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|