Driving Timing Convergence of FPGA Designs through Machine Learning and Cloud Computing

Machine learning and cloud computing techniques can help accelerate timing closure for FPGA designs without any modification to original RTL code. RTL is generally frozen closer to system delivery target to avoid injecting new unforeseen bugs or significantly affecting design characteristics. In the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kapre, Nachiket, Chandrashekaran, Bibin, Ng, Harnhua, Teo, Kirvy
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2015
主題:
在線閱讀:https://hdl.handle.net/10356/81244
http://hdl.handle.net/10220/39167
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!