Determination of diffusion lengths with the use of EBIC from a diffused junction with any values of junction depths

Minority carrier diffusion lengths determine the performance of bipolar and photodiode devices. An electron-beaminduced-current (EBIC) method has been widely used to extract this parameter. The extraction of the diffusion lengths involves a p-n junction to collect the minority carriers. The most use...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ong, Vincent K. S., Kurniawan, Oka.
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2009
主題:
在線閱讀:https://hdl.handle.net/10356/84920
http://hdl.handle.net/10220/4658
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Minority carrier diffusion lengths determine the performance of bipolar and photodiode devices. An electron-beaminduced-current (EBIC) method has been widely used to extract this parameter. The extraction of the diffusion lengths involves a p-n junction to collect the minority carriers. The most used configuration, which is called the normal collector, assumes that the junction has an infinitely large junction depth. However, in planar devices, the junction depth is comparable to the diffusion lengths of the material. This paper presents a simple and yet accurate method to determine the diffusion lengths of the material from a diffused junction with any values of junction depths. The diffusion length of the material is extracted from the negative reciprocal of the slope of the EBIC profile in semi-logarithmic plot. It was found that the proposed method is able to extract the diffusion lengths accurately for any values of the junction depths and surface recombination velocities. The maximum error in using this method is about 6%.