Modification and control of topological insulator surface states using surface disorder
We numerically demonstrate a practical means of systematically controlling topological transport on the surface of a three-dimensional topological insulator, by introducing strong disorder in a layer of depth d extending inward from the surface of the topological insulator. The dependence on d of th...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/88525 http://hdl.handle.net/10220/45844 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We numerically demonstrate a practical means of systematically controlling topological transport on the surface of a three-dimensional topological insulator, by introducing strong disorder in a layer of depth d extending inward from the surface of the topological insulator. The dependence on d of the density of states, conductance, scattering time, scattering length, diffusion constant, and mean Fermi velocity are investigated. The proposed control via disorder depth d requires that the disorder strength be near the large value which is necessary to drive the topological insulator into the nontopological phase. If d is patterned using masks, gates, ion implantation, etc., then integrated circuits may be fabricated. This technique will be useful for experiments and for device engineering. |
---|