Molecular features underlying neurodegeneration identified through in vitro modeling of genetically diverse parkinson’s disease patients

The fact that Parkinson’s disease (PD) can arise from numerous genetic mutations suggests a unifying molecular pathology underlying the various genetic backgrounds. To address this hypothesis, we took an integrated approach utilizing in vitro disease modeling and comprehensive transcriptome profilin...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin, Lin, Göke, Jonathan, Cukuroglu, Engin, Dranias, Mark R., VanDongen, Antonius M.J., Stanton, Lawrence W.
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/89993
http://hdl.handle.net/10220/46469
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The fact that Parkinson’s disease (PD) can arise from numerous genetic mutations suggests a unifying molecular pathology underlying the various genetic backgrounds. To address this hypothesis, we took an integrated approach utilizing in vitro disease modeling and comprehensive transcriptome profiling to advance our understanding of PD progression and the concordant downstream signaling pathways across divergent genetic predispositions. To model PD in vitro, we generated neurons harboring disease-causing mutations from patient-specific, induced pluripotent stem cells (iPSCs). We observed signs of degeneration in midbrain dopaminergic neurons, reflecting the cardinal feature of PD. Gene expression signatures of PD neurons provided molecular insights into disease phenotypes observed in vitro, including oxidative stress vulnerability and altered neuronal activity. Notably, PD neurons show that elevated RBFOX1, a gene previously linked to neurodevelopmental diseases, underlies a pattern of alternative RNA-processing associated with PD-specific phenotypes.