Fault detection isolation and estimation in a vehicle steering system
Recently, a bond-graph-based fault detection and isolation (FDI) framework has been developed with a new concept of global analytical redundancy relations (GARRs) (Low, Wang, Arogeti, and Luo, 2009, 2010; Low, Wang, Arogeti, and Zhang, 2010). This new concept allows the fault diagnosis for hybrid sy...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95839 http://hdl.handle.net/10220/11413 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Recently, a bond-graph-based fault detection and isolation (FDI) framework has been developed with a new concept of global analytical redundancy relations (GARRs) (Low, Wang, Arogeti, and Luo, 2009, 2010; Low, Wang, Arogeti, and Zhang, 2010). This new concept allows the fault diagnosis for hybrid systems which consist of both continuous dynamics and discrete modes. A failure of a safety critical system such as the steering system of an automated guided vehicle may cause severe damage. Such failure can be avoided by an early detection and estimation of faults. In this paper, the newly developed FDI method is studied in details using an electrohydraulic steering system of an electric vehicle. The steering system and faults are modeled as a hybrid dynamic system by the hybrid bond graph (HBG) modeling technique. GARRs are then derived systematically from the HBG model with a specific causality assignment. Fault detection, isolation, and estimation are applied, experimental setup is described, and results are discussed. |
---|