Mining visual collocation patterns via self-supervised subspace learning
Traditional text data mining techniques are not directly applicable to image data which contain spatial information and are characterized by high-dimensional visual features. It is not a trivial task to discover meaningful visual patterns from images because the content variations and spatial depend...
Saved in:
Main Authors: | Yuan, Junsong, Wu, Ying |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/96325 http://hdl.handle.net/10220/11425 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Self-supervised online metric learning with low rank constraint for scene categorization
由: Cong, Yang, et al.
出版: (2013) -
Semi-supervised domain adaptation with subspace learning for visual recognition
由: YAO, Ting, et al.
出版: (2015) -
Addressing the cold start problem in active learning using self-supervised learning
由: Chen, Liangyu
出版: (2022) -
Ubiquitously supervised subspace learning
由: Yang, J., et al.
出版: (2014) -
Discriminative video pattern search for efficient action detection
由: Yuan, Junsong, et al.
出版: (2013)