Amorphous/crystalline silicon heterojunction solar cells via remote inductively coupled plasma processing
Low-frequency inductively coupled plasma (ICP) has been widely used to deposit amorphous or microcrystalline Si thin films, but the intrinsic drawback namely ion bombardment effect limits its application in Si heterojunction solar cells. In this letter, we redesigned typical ICP and realized a remot...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/97916 http://hdl.handle.net/10220/12019 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Low-frequency inductively coupled plasma (ICP) has been widely used to deposit amorphous or microcrystalline Si thin films, but the intrinsic drawback namely ion bombardment effect limits its application in Si heterojunction solar cells. In this letter, we redesigned typical ICP and realized a remote plasma deposition with suppressed ion bombardment effect. This remote ICP system enables the synthesis of high quality amorphous Si layers with a compact network and a high hydrogen content (10.5%). By using this remote ICP system, we achieved amorphous/crystalline silicon heterojunction solar cells with an efficiency of 14.1% without any back surface field or textures. |
---|