Al2O3 interface engineering of germanium epitaxial layer grown directly on silicon

The quality of germanium (Ge) epitaxial film grown directly on silicon (Si) substrate is investigated based on the electrical properties of a metal-oxide-semiconductor capacitor (MOSCAP). Different thermal cycling temperatures are used in this study to investigate the effect of temperature on the Ge...

Full description

Saved in:
Bibliographic Details
Main Authors: Fitzgerald, Eugene A., Tan, Yew Heng, Yew, Kwang Sing, Lee, Kwang Hong, Chang, Yao-Jen, Chen, Kuan-Neng, Ang, Diing Shenp, Tan, Chuan Seng
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/98577
http://hdl.handle.net/10220/17265
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The quality of germanium (Ge) epitaxial film grown directly on silicon (Si) substrate is investigated based on the electrical properties of a metal-oxide-semiconductor capacitor (MOSCAP). Different thermal cycling temperatures are used in this study to investigate the effect of temperature on the Ge film quality. Prior to high-k dielectric deposition, various surface treatments are applied on the Ge film to determine the leakage current density using scanning tunneling microscopy. The interface trap density (Dit) and leakage current obtained from the C-V and I-V measurements on the MOSCAP, as well as the threading dislocation density (TDD), show a linear relationship with the thermal cycling temperature. It is found that the Ge epitaxial film that undergoes the highest thermal cycling temperature of 825°C and surface treatment in ultraviolet ozone, followed by germanium oxynitride (GeOxNy) formation, demonstrates the lowest leakage current of ~ 2.3×10^-8 A/cm2 (at -2 V), Dit ~ 3.5 × 10^11 cm-2/V, and TDD <; 10^7 cm^-2.