Outlier-robust tensor PCA

Low-rank tensor analysis is important for various real applications in computer vision. However, existing methods focus on recovering a low-rank tensor contaminated by Gaussian or gross sparse noise and hence cannot effectively handle outliers that are common in practical tensor data. To solve this...

全面介紹

Saved in:
書目詳細資料
Main Authors: ZHOU, Pan, FENG, Jiashi
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2016
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/9008
https://ink.library.smu.edu.sg/context/sis_research/article/10011/viewcontent/2017_CVPR_RTPCA.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

相似書籍