Artificial neural networks parameters optimization design of experiments: An application in materials modeling
This paper focused on the application of design of experiments to determine optimize parameters for multilayer-perceptron artificial neural network trained with back-propagation for modeling purpose. Artificial neural networks (ANNs) for modeling have been widely used in various fields because of it...
Saved in:
Main Authors: | Wimalin Laosiritaworn, Nantakarn Chotchaithanakorn |
---|---|
格式: | 雜誌 |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67650323958&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59408 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
Artificial neural networks parameters optimization design of experiments: An application in materials modeling
由: Wimalin Laosiritaworn, et al.
出版: (2018) -
Concurrent modeling of magnetic field parameters, crystalline structures, and ferromagnetic dynamic critical behavior relationships: Mean-field and artificial neural network projections
由: Yongyut Laosiritaworn, et al.
出版: (2018) -
Artificial neural networks parameters optimization design of experiments: An application in materials modeling
由: Laosiritaworn W., et al.
出版: (2014) -
Artificial neural networks parameters optimization design of experiments: An application in materials modeling
由: Laosiritaworn W., et al.
出版: (2014) -
Concurrent artificial neural network modeling of single-crystal and bulk-ceramics ferroelectric-hysteresis: An application to barium titanate
由: Wimalin Laosiritaworn, et al.
出版: (2018)