Predicting high-level student responses using conceptual clustering
A conceptual clustering algorithm can search through huge amounts of data looking for multi-dimensional structures, where each structure or cluster represents a relevant concept in the problem-solving domain. We investigated on the effect of cluster knowledge for a learning agent to improve its pred...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Published: |
Animo Repository
2005
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/2948 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Summary: | A conceptual clustering algorithm can search through huge amounts of data looking for multi-dimensional structures, where each structure or cluster represents a relevant concept in the problem-solving domain. We investigated on the effect of cluster knowledge for a learning agent to improve its prediction of higher level student response aspects. Our empirical results show that when cluster knowledge is utilized by a function approximator, prediction is improved as compared to treating the entire data population as a single cluster. © 2005 Asia-Pacific Society for Computers in Education. |
---|