A computational feasibility study of failure-tolerant path planning
This work considers the computational costs associated with the implementation of a failure-tolerant path planning algorithm proposed in [1]. The algorithm makes the following assumptions: a manipulator is redundant relative to its task, only a single joint failure occurs at any given time, the mani...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Published: |
Animo Repository
2004
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/7131 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
id |
oai:animorepository.dlsu.edu.ph:faculty_research-7893 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:faculty_research-78932022-10-11T05:11:21Z A computational feasibility study of failure-tolerant path planning Jamisola, Rodrigo S., Jr. Maciejewski, Anthony A. Roberts, Rodney G. This work considers the computational costs associated with the implementation of a failure-tolerant path planning algorithm proposed in [1]. The algorithm makes the following assumptions: a manipulator is redundant relative to its task, only a single joint failure occurs at any given time, the manipulator is capable of detecting a joint failure and immediately locks the failed joint, and the environment is static and known. The algorithm is evaluated on a three degree-of-freedom planar manipulator for a total of eleven thousand different scenarios, randomly varying the robot's start and goal positions and the number and locations of obstacles in the environment. Statistical data are presented related to the computation time required by the different steps of the algorithm as a function of the complexity of the environment. 2004-03-01T08:00:00Z text https://animorepository.dlsu.edu.ph/faculty_research/7131 Faculty Research Work Animo Repository Fault-tolerant computing Manipulators (Mechanism) Robotics |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
topic |
Fault-tolerant computing Manipulators (Mechanism) Robotics |
spellingShingle |
Fault-tolerant computing Manipulators (Mechanism) Robotics Jamisola, Rodrigo S., Jr. Maciejewski, Anthony A. Roberts, Rodney G. A computational feasibility study of failure-tolerant path planning |
description |
This work considers the computational costs associated with the implementation of a failure-tolerant path planning algorithm proposed in [1]. The algorithm makes the following assumptions: a manipulator is redundant relative to its task, only a single joint failure occurs at any given time, the manipulator is capable of detecting a joint failure and immediately locks the failed joint, and the environment is static and known. The algorithm is evaluated on a three degree-of-freedom planar manipulator for a total of eleven thousand different scenarios, randomly varying the robot's start and goal positions and the number and locations of obstacles in the environment. Statistical data are presented related to the computation time required by the different steps of the algorithm as a function of the complexity of the environment. |
format |
text |
author |
Jamisola, Rodrigo S., Jr. Maciejewski, Anthony A. Roberts, Rodney G. |
author_facet |
Jamisola, Rodrigo S., Jr. Maciejewski, Anthony A. Roberts, Rodney G. |
author_sort |
Jamisola, Rodrigo S., Jr. |
title |
A computational feasibility study of failure-tolerant path planning |
title_short |
A computational feasibility study of failure-tolerant path planning |
title_full |
A computational feasibility study of failure-tolerant path planning |
title_fullStr |
A computational feasibility study of failure-tolerant path planning |
title_full_unstemmed |
A computational feasibility study of failure-tolerant path planning |
title_sort |
computational feasibility study of failure-tolerant path planning |
publisher |
Animo Repository |
publishDate |
2004 |
url |
https://animorepository.dlsu.edu.ph/faculty_research/7131 |
_version_ |
1767196665268142080 |