An extended unified Schottky-Poole-Frenkel theory to explain the current-voltage characteristics of capacitors using high-k dielectric materials

Historically, there is a controversy regarding the current-voltage (I-V) characteristics of thin film MIM (metal-insulator-metal) capacitors, which is quite frequently modeled by either the Schottky model or the Poole-Frenkel model. In this letter, the author points out that the two models actually...

全面介紹

Saved in:
書目詳細資料
主要作者: Lau, Wai Shing.
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/100826
http://hdl.handle.net/10220/11050
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Historically, there is a controversy regarding the current-voltage (I-V) characteristics of thin film MIM (metal-insulator-metal) capacitors, which is quite frequently modeled by either the Schottky model or the Poole-Frenkel model. In this letter, the author points out that the two models actually can be unified. The physics underlying this model involves a non-uniform distribution of defect states such that a very large quantity of defect states exist at the two interface of the MIM capacitor while the density of defect states in the insulator bulk is relatively low, resulting in an M/n-i-n/M structure. This unified Schottky-Poole-Frenkel model can be further extended to include other effects like space charge limited current, tunneling, etc. Evidence supporting this theory will be provided.