Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites

Background: The human proteins TMTC1, TMTC2, TMTC3 and TMTC4 have been experimentally shown to be components of a new O-mannosylation pathway. Their own mannosyl-transferase activity has been suspected but their actual enzymatic potential has not been demonstrated yet. So far, sequence analysis of T...

Full description

Saved in:
Bibliographic Details
Main Authors: Eisenhaber, Birgit, Sinha, Swati, Jadalanki, Chaitanya K., Shitov, Vladimir A., Tan, Qiao Wen, Sirota, Fernanda L., Eisenhaber, Frank
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146664
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-146664
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Biological sciences
TMTC1
TMTC2
spellingShingle Science::Biological sciences
TMTC1
TMTC2
Eisenhaber, Birgit
Sinha, Swati
Jadalanki, Chaitanya K.
Shitov, Vladimir A.
Tan, Qiao Wen
Sirota, Fernanda L.
Eisenhaber, Frank
Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites
description Background: The human proteins TMTC1, TMTC2, TMTC3 and TMTC4 have been experimentally shown to be components of a new O-mannosylation pathway. Their own mannosyl-transferase activity has been suspected but their actual enzymatic potential has not been demonstrated yet. So far, sequence analysis of TMTCs has been compromised by evolutionary sequence divergence within their membrane-embedded N-terminal region, sequence inaccuracies in the protein databases and the difficulty to interpret the large functional variety of known homologous proteins (mostly sugar transferases and some with known 3D structure). Results: Evolutionary conserved molecular function among TMTCs is only possible with conserved membrane topology within their membrane-embedded N-terminal regions leading to the placement of homologous long intermittent loops at the same membrane side. Using this criterion, we demonstrate that all TMTCs have 11 transmembrane regions. The sequence segment homologous to Pfam model DUF1736 is actually just a loop between TM7 and TM8 that is located in the ER lumen and that contains a small hydrophobic, but not membrane-embedded helix. Not only do the membrane-embedded N-terminal regions of TMTCs share a common fold and 3D structural similarity with subgroups of GT-C sugar transferases. The conservation of residues critical for catalysis, for binding of a divalent metal ion and of the phosphate group of a lipid-linked sugar moiety throughout enzymatically and structurally well-studied GT-Cs and sequences of TMTCs indicates that TMTCs are actually sugar-transferring enzymes. We present credible 3D structural models of all four TMTCs (derived from their closest known homologues 5ezm/5f15) and find observed conserved sequence motifs rationalized as binding sites for a metal ion and for a dolichyl-phosphate-mannose moiety. Conclusions: With the results from both careful sequence analysis and structural modelling, we can conclusively say that the TMTCs are enzymatically active sugar transferases belonging to the GT-C/PMT superfamily. The DUF1736 segment, the loop between TM7 and TM8, is critical for catalysis and lipid-linked sugar moiety binding. Together with the available indirect experimental data, we conclude that the TMTCs are not only part of an O-mannosylation pathway in the endoplasmic reticulum of upper eukaryotes but, actually, they are the sought mannosyl-transferases.
author2 School of Biological Sciences
author_facet School of Biological Sciences
Eisenhaber, Birgit
Sinha, Swati
Jadalanki, Chaitanya K.
Shitov, Vladimir A.
Tan, Qiao Wen
Sirota, Fernanda L.
Eisenhaber, Frank
format Article
author Eisenhaber, Birgit
Sinha, Swati
Jadalanki, Chaitanya K.
Shitov, Vladimir A.
Tan, Qiao Wen
Sirota, Fernanda L.
Eisenhaber, Frank
author_sort Eisenhaber, Birgit
title Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites
title_short Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites
title_full Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites
title_fullStr Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites
title_full_unstemmed Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites
title_sort conserved sequence motifs in human tmtc1, tmtc2, tmtc3, and tmtc4, new o-mannosyltransferases from the gt-c/pmt clan, are rationalized as ligand binding sites
publishDate 2021
url https://hdl.handle.net/10356/146664
_version_ 1759854884232888320
spelling sg-ntu-dr.10356-1466642023-02-28T17:09:55Z Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites Eisenhaber, Birgit Sinha, Swati Jadalanki, Chaitanya K. Shitov, Vladimir A. Tan, Qiao Wen Sirota, Fernanda L. Eisenhaber, Frank School of Biological Sciences Bioinformatics Institute (BII), A*STAR Genome Institute of Singapore (BII), A*STAR Science::Biological sciences TMTC1 TMTC2 Background: The human proteins TMTC1, TMTC2, TMTC3 and TMTC4 have been experimentally shown to be components of a new O-mannosylation pathway. Their own mannosyl-transferase activity has been suspected but their actual enzymatic potential has not been demonstrated yet. So far, sequence analysis of TMTCs has been compromised by evolutionary sequence divergence within their membrane-embedded N-terminal region, sequence inaccuracies in the protein databases and the difficulty to interpret the large functional variety of known homologous proteins (mostly sugar transferases and some with known 3D structure). Results: Evolutionary conserved molecular function among TMTCs is only possible with conserved membrane topology within their membrane-embedded N-terminal regions leading to the placement of homologous long intermittent loops at the same membrane side. Using this criterion, we demonstrate that all TMTCs have 11 transmembrane regions. The sequence segment homologous to Pfam model DUF1736 is actually just a loop between TM7 and TM8 that is located in the ER lumen and that contains a small hydrophobic, but not membrane-embedded helix. Not only do the membrane-embedded N-terminal regions of TMTCs share a common fold and 3D structural similarity with subgroups of GT-C sugar transferases. The conservation of residues critical for catalysis, for binding of a divalent metal ion and of the phosphate group of a lipid-linked sugar moiety throughout enzymatically and structurally well-studied GT-Cs and sequences of TMTCs indicates that TMTCs are actually sugar-transferring enzymes. We present credible 3D structural models of all four TMTCs (derived from their closest known homologues 5ezm/5f15) and find observed conserved sequence motifs rationalized as binding sites for a metal ion and for a dolichyl-phosphate-mannose moiety. Conclusions: With the results from both careful sequence analysis and structural modelling, we can conclusively say that the TMTCs are enzymatically active sugar transferases belonging to the GT-C/PMT superfamily. The DUF1736 segment, the loop between TM7 and TM8, is critical for catalysis and lipid-linked sugar moiety binding. Together with the available indirect experimental data, we conclude that the TMTCs are not only part of an O-mannosylation pathway in the endoplasmic reticulum of upper eukaryotes but, actually, they are the sought mannosyl-transferases. Agency for Science, Technology and Research (A*STAR) Published version This work has been supported by the Biomedical Research Council of the Agency for Science, Technology and Research (A*STAR). We thank Shazib Pervaiz (National University Singapore) for drawing our attention to the sequence-based function prediction of human TMTC2 in 2012. There was no dedicated funding for this project. The writing of this article benefitted from the shutdown of other activities during the COVID-19 lock-down. General financial support from A*STAR is gratefully acknowledged. QWT received an A*STAR Graduate Academy (AGA) scholarship (AUS) for her university studies. The internship of VS was supported by a SIPGA grant from AGA. 2021-03-04T06:43:14Z 2021-03-04T06:43:14Z 2021 Journal Article Eisenhaber, B., Sinha, S., Jadalanki, C. K., Shitov, V. A., Tan, Q. W., Sirota, F. L., & Eisenhaber, F. (2021). Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites. Biology Direct, 16(1), 4-. doi:10.1186/s13062-021-00291-w 1745-6150 0000-0002-9599-5420 https://hdl.handle.net/10356/146664 10.1186/s13062-021-00291-w 33436046 2-s2.0-85099218431 1 16 en Biology Direct © 2021 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. application/pdf