LiDAR relocalization on edge devices

Simultaneous localization and mapping (SLAM), with the aid of cheap cameras, has many applications today. In niche situations where cameras are inappropriate, such as for privacy or security reasons, LiDARs have stepped up to fill the gap. However, much of the literature studying LiDAR SLAM have foc...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Christopher Jia Yao
Other Authors: Loke Yuan Ren
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148615
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-148615
record_format dspace
spelling sg-ntu-dr.10356-1486152021-05-07T13:14:12Z LiDAR relocalization on edge devices Lim, Christopher Jia Yao Loke Yuan Ren School of Computer Science and Engineering Mediatek Singapore Wong Wai Mun yrloke@ntu.edu.sg Engineering::Computer science and engineering Engineering::Electrical and electronic engineering::Control and instrumentation::Robotics Simultaneous localization and mapping (SLAM), with the aid of cheap cameras, has many applications today. In niche situations where cameras are inappropriate, such as for privacy or security reasons, LiDARs have stepped up to fill the gap. However, much of the literature studying LiDAR SLAM have focused on autonomous vehicles with powerful spindle-type LiDAR sensors. There is a potential for LiDAR SLAM to be incorporated into many other areas such as home electronics, mobile devices, and even wearable technology. This paper explores the possibility of extending LiDAR relocalization methods to edge devices, by assuming edge devices do not have access to powerful LiDAR sensors, and also have limited processing capabilities. This is accomplished through two novel techniques. First, point clouds captured by a Velodyne HDL-64E are down-sampled using a roughness score instead of the industry practice of random down-sampling. This allows up to 90% of points to be removed while retaining the most salient of points, saving both downstream computation and storage costs. Second, ground truth overlap percentages can be calculated using the polygon approximation method introduced in this paper, which approximates the area of overlap between two circular sectors at any angle. This allows ground truth overlaps to be calculated for LiDAR scans that have a field of view (FOV) of less than 360 degrees. The performance of OverlapNet on the KITTI odometry dataset using the full original data is compared against data that is truncated through down-sampling and restriction of FOV. The results show that even with an information reduction rate of approximately 96.67%, the model is still able to perform well, with a slight increase of accuracy by 3.28%, and a slight drop of F1 score by 1.8%. This proves that it is possible to adapt a model that has been trained for LiDAR relocalization on a car to any device, even with limited hardware restrictions. Bachelor of Engineering (Computer Science) 2021-05-07T13:14:12Z 2021-05-07T13:14:12Z 2021 Final Year Project (FYP) Lim, C. J. Y. (2021). LiDAR relocalization on edge devices. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/148615 https://hdl.handle.net/10356/148615 en SCSE20-0388 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Computer science and engineering
Engineering::Electrical and electronic engineering::Control and instrumentation::Robotics
spellingShingle Engineering::Computer science and engineering
Engineering::Electrical and electronic engineering::Control and instrumentation::Robotics
Lim, Christopher Jia Yao
LiDAR relocalization on edge devices
description Simultaneous localization and mapping (SLAM), with the aid of cheap cameras, has many applications today. In niche situations where cameras are inappropriate, such as for privacy or security reasons, LiDARs have stepped up to fill the gap. However, much of the literature studying LiDAR SLAM have focused on autonomous vehicles with powerful spindle-type LiDAR sensors. There is a potential for LiDAR SLAM to be incorporated into many other areas such as home electronics, mobile devices, and even wearable technology. This paper explores the possibility of extending LiDAR relocalization methods to edge devices, by assuming edge devices do not have access to powerful LiDAR sensors, and also have limited processing capabilities. This is accomplished through two novel techniques. First, point clouds captured by a Velodyne HDL-64E are down-sampled using a roughness score instead of the industry practice of random down-sampling. This allows up to 90% of points to be removed while retaining the most salient of points, saving both downstream computation and storage costs. Second, ground truth overlap percentages can be calculated using the polygon approximation method introduced in this paper, which approximates the area of overlap between two circular sectors at any angle. This allows ground truth overlaps to be calculated for LiDAR scans that have a field of view (FOV) of less than 360 degrees. The performance of OverlapNet on the KITTI odometry dataset using the full original data is compared against data that is truncated through down-sampling and restriction of FOV. The results show that even with an information reduction rate of approximately 96.67%, the model is still able to perform well, with a slight increase of accuracy by 3.28%, and a slight drop of F1 score by 1.8%. This proves that it is possible to adapt a model that has been trained for LiDAR relocalization on a car to any device, even with limited hardware restrictions.
author2 Loke Yuan Ren
author_facet Loke Yuan Ren
Lim, Christopher Jia Yao
format Final Year Project
author Lim, Christopher Jia Yao
author_sort Lim, Christopher Jia Yao
title LiDAR relocalization on edge devices
title_short LiDAR relocalization on edge devices
title_full LiDAR relocalization on edge devices
title_fullStr LiDAR relocalization on edge devices
title_full_unstemmed LiDAR relocalization on edge devices
title_sort lidar relocalization on edge devices
publisher Nanyang Technological University
publishDate 2021
url https://hdl.handle.net/10356/148615
_version_ 1699245911059726336