Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
The controlled introduction of elastic strains is an appealing strategy for modulating the physical properties of semiconductor materials. With the recent discovery of large elastic deformation in nanoscale specimens as diverse as silicon and diamond, employing this strategy to improve device perfor...
محفوظ في:
المؤلفون الرئيسيون: | Tsymbalov, Evgenii, Shi, Zhe, Dao, Ming, Suresh, Subra, Li, Ju, Shapeev, Alexander |
---|---|
مؤلفون آخرون: | School of Biological Sciences |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/151933 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Deep elastic strain engineering of bandgap through machine learning
بواسطة: Shi, Zhe, وآخرون
منشور في: (2019) -
Phonon stability boundary and deep elastic strain engineering of lattice thermal conductivity
بواسطة: Shi, Zhe, وآخرون
منشور في: (2024) -
An efficient adaptive analysis procedure for certified solutions with exact bounds of strain energy for elasticity problems
بواسطة: Zhang, G.Y., وآخرون
منشور في: (2014) -
Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
بواسطة: Chen, L., وآخرون
منشور في: (2014) -
Analyses of internal structures and defects in materials using physics-informed neural networks
بواسطة: Zhang, Enrui, وآخرون
منشور في: (2023)