Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
The controlled introduction of elastic strains is an appealing strategy for modulating the physical properties of semiconductor materials. With the recent discovery of large elastic deformation in nanoscale specimens as diverse as silicon and diamond, employing this strategy to improve device perfor...
محفوظ في:
المؤلفون الرئيسيون: | Tsymbalov, Evgenii, Shi, Zhe, Dao, Ming, Suresh, Subra, Li, Ju, Shapeev, Alexander |
---|---|
مؤلفون آخرون: | School of Biological Sciences |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/151933 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Deep elastic strain engineering of bandgap through machine learning
بواسطة: Shi, Zhe, وآخرون
منشور في: (2019) -
Phonon stability boundary and deep elastic strain engineering of lattice thermal conductivity
بواسطة: Shi, Zhe, وآخرون
منشور في: (2024) -
Band alignment of yttrium oxide on various relaxed and strained semiconductor substrates
بواسطة: Chiam, S.Y., وآخرون
منشور في: (2014) -
TWO-DIMENSIONAL WIDE BAND GAP SEMICONDUCTORS FOR DEEP UV PHOTONICS
بواسطة: KEVIN KAHN
منشور في: (2017) -
APPLICATION OF MACHINE LEARNING IN MOLECULAR STRUCTURE OPTIMIZATION AND NUDGED ELASTIC BAND PROCESS
بواسطة: Kristianto Wijaya, Vieri