Unsupervised domain adaptation for LiDAR segmentation
Transferring knowledge learned from the labeled source domain to the raw target domain for unsupervised domain adaptation (UDA) is essential to the scalable deployment of an autonomous driving system. State-of-the-art approaches in UDA often employ a key concept: utilize joint supervision signals fr...
Saved in:
主要作者: | Kong, Lingdong |
---|---|
其他作者: | Zhang Hanwang |
格式: | Thesis-Master by Research |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/158401 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Place recognition for unmanned vehicle based on 3D LiDAR and semantic point cloud
由: Zhao, Yangyang
出版: (2024) -
Calibration of LiDARs with object detection method
由: Gao, Jingtong
出版: (2022) -
An investigation over the state-of-the-art unsupervised domain adaptation person re-identification
由: Xiao, Yang
出版: (2022) -
Unsupervised domain adaptation algorithm design for robot perception
由: Tan, Jiawei
出版: (2021) -
Computational imaging and detection via deep learning
由: Kong, Lingdong
出版: (2020)