Trajectory prediction for autonomous driving using deep learning approach
As more self-driving car companies started their real-world testing, using trajectory prediction in the decision-making and planning process of self-driving systems is crucial to enhance the safety and effectiveness of autonomous vehicles. This project proposes a trajectory prediction algorithm for...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/166991 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | As more self-driving car companies started their real-world testing, using trajectory prediction in the decision-making and planning process of self-driving systems is crucial to enhance the safety and effectiveness of autonomous vehicles.
This project proposes a trajectory prediction algorithm for autonomous vehicles using a deep learning framework. The proposed model consists of four parts: a recurrent neural network to encode temporal information of each vehicle, a graph neural network to encode the spatial relationships between the target vehicle and surrounding vehicles, a self-attention mechanism to process and synthesize the important vehicle embeddings and a final multilayer perceptron to decode and generate the future trajectories. The machine learning model is validated on Argoverse, a large-scale trajectory prediction dataset from real-world self-driving vehicles. Ablation studies have shown that the interaction-aware model can outperform maneuver-based models by a large margin. Furthermore, our map-free model performed considerably well from the validation results obtained among other map-dependent trajectory prediction models validated on the benchmark hosted on eval.ai. |
---|