Trajectory prediction for autonomous driving using deep learning approach

As more self-driving car companies started their real-world testing, using trajectory prediction in the decision-making and planning process of self-driving systems is crucial to enhance the safety and effectiveness of autonomous vehicles. This project proposes a trajectory prediction algorithm for...

全面介紹

Saved in:
書目詳細資料
主要作者: Wong, Shang Yi
其他作者: Lyu Chen
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/166991
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:As more self-driving car companies started their real-world testing, using trajectory prediction in the decision-making and planning process of self-driving systems is crucial to enhance the safety and effectiveness of autonomous vehicles. This project proposes a trajectory prediction algorithm for autonomous vehicles using a deep learning framework. The proposed model consists of four parts: a recurrent neural network to encode temporal information of each vehicle, a graph neural network to encode the spatial relationships between the target vehicle and surrounding vehicles, a self-attention mechanism to process and synthesize the important vehicle embeddings and a final multilayer perceptron to decode and generate the future trajectories. The machine learning model is validated on Argoverse, a large-scale trajectory prediction dataset from real-world self-driving vehicles. Ablation studies have shown that the interaction-aware model can outperform maneuver-based models by a large margin. Furthermore, our map-free model performed considerably well from the validation results obtained among other map-dependent trajectory prediction models validated on the benchmark hosted on eval.ai.