High-efficiency silicon nanowire array near infrared photodetectors via length control and SiOx surface passivation

Silicon (Si) nanowire (NW) array is a promising light-trapping platform due to the strong interaction between light and nanostructure. A photodetector benefits from the improved optical absorption in the Si NW array. Although the optical absorption increases with the NW length, the large NW length i...

Full description

Saved in:
Bibliographic Details
Main Authors: Son, Bongkwon, Shin, Sang-Ho, Zhao, Zhi-Jun, Ju, Byeong-Kwon, Jeong, Jun-Ho, Kim, Munho, Tan, Chuan Seng
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/168615
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Silicon (Si) nanowire (NW) array is a promising light-trapping platform due to the strong interaction between light and nanostructure. A photodetector benefits from the improved optical absorption in the Si NW array. Although the optical absorption increases with the NW length, the large NW length is not always preferable owing to the large surface area. Here, the systematic study on the Si NW array photodetectors with varied NW lengths is investigated. It is revealed that the photodetectors with 1 μm length provide a highest responsivity of 0.65 A W−1 and a specific detectivity of 1.40 × 109 cm Hz1/2 W−1 at the wavelength of 1000 nm, including the dark current of 54 μA at 1 V. In addition, the silicon oxide (SiOx) surface passivation is introduced to induce the high photogain. As a result, the responsivity is improved by 13 times (0.55 A W−1) at 1100 nm. This work proposes high-efficiency Si NW array photodetectors by the NW array length control and the SiOx surface passivation.