Traffic efficiency and fairness optimisation for autonomous intersection management based on reinforcement learning
Autonomous Intersection Management (AIM) for high-level Connected and Automated Vehicles (CAVs) has evolved from rule-based to optimisation-based policies. However, at congested major-minor intersections, optimising solely for efficiency can negatively impact vehicle fairness. This study addresses t...
محفوظ في:
المؤلفون الرئيسيون: | Wu, Yuanyuan, Wang, David Zhi Wei, Zhu, Feng |
---|---|
مؤلفون آخرون: | School of Civil and Environmental Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/171244 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Modeling adaptive platoon and reservation based autonomous intersection control: a deep reinforcement learning approach
بواسطة: Li, Duowei, وآخرون
منشور في: (2022) -
Modeling adaptive platoon and reservation-based intersection control for connected and autonomous vehicles employing deep reinforcement learning
بواسطة: Li, Duowei, وآخرون
منشور في: (2023) -
The prediction of delay time at intersection and route planning for autonomous vehicles
بواسطة: GOU, Genwang, وآخرون
منشور في: (2020) -
Managing mixed traffic with autonomous vehicles – a day-to-day routing allocation scheme
بواسطة: Guo, Zhihong, وآخرون
منشور في: (2022) -
Influence of CAVs platooning on intersection capacity under mixed traffic
بواسطة: Wu, Yuanyuan, وآخرون
منشور في: (2022)