Preference-driven parameter tuning of model predictive controllers
Model Predictive Control (MPC) has become a cornerstone in numerous applications, ranging from industrial processes to autonomous systems. However, a key challenge lies in the development of a generalized and proceduralized method for implementing MPC strategies across diverse scenarios. Traditional...
Saved in:
主要作者: | Xu, Zekai |
---|---|
其他作者: | Ling Keck Voon |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/173682 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Automated tuning of nonlinear model predictive controller by reinforcement learning
由: Mehndiratta, Mohit, et al.
出版: (2020) -
Can deep models help a robot to tune its controller? : A step closer to self-tuning model predictive controllers
由: Mehndiratta, Mohit, et al.
出版: (2022) -
Automatic tuning of predictive control for motion control applications
由: Lee, Wing Foon.
出版: (2008) -
Data driven algorithms to tune physical layer parameters of an underwater communication link
由: Shankar, S., et al.
出版: (2014) -
Data-driven adaptive control for laser-based additive manufacturing with automatic controller tuning
由: Chen, Lequn, et al.
出版: (2021)