Curvature-enhanced graph convolutional network for biomolecular interaction prediction

Geometric deep learning has demonstrated a great potential in non-Euclidean data analysis. The incorporation of geometric insights into learning architecture is vital to its success. Here we propose a curvature-enhanced graph convolutional network (CGCN) for biomolecular interaction prediction. Our...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Shen, Cong, Ding, Pingjian, Wee, Junjie, Bi, Jialin, Luo, Jiawei, Xia, Kelin
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/174927
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

مواد مشابهة