Uncertainty-aware model-based reinforcement learning: methodology and application in autonomous driving
To further improve learning efficiency and performance of reinforcement learning (RL), a novel uncertainty-aware model-based RL method is proposed and validated in autonomous driving scenarios in this paper. First, an action-conditioned ensemble model with the capability of uncertainty assessment is...
محفوظ في:
المؤلفون الرئيسيون: | Wu, Jingda, Huang, Zhiyu, Lv, Chen |
---|---|
مؤلفون آخرون: | School of Mechanical and Aerospace Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/178357 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Fear-neuro-inspired reinforcement learning for safe autonomous driving
بواسطة: He, Xiangkun, وآخرون
منشور في: (2024) -
Toward human-in-the-loop AI: enhancing deep reinforcement learning via real-time human guidance for autonomous driving
بواسطة: Wu, Jingda, وآخرون
منشور في: (2023) -
Trading with confidence: comprehensive uncertainty estimation for reinforcement learning agents
بواسطة: Li, Lin
منشور في: (2025) -
Human-guided reinforcement learning: methodology and application to autonomous driving
بواسطة: Wu, Jingda
منشور في: (2023) -
Prioritized experience-based reinforcement learning with human guidance for autonomous driving
بواسطة: Wu, Jingda, وآخرون
منشور في: (2024)