Benchmarking feed-forward randomized neural networks for vessel trajectory prediction
The burgeoning scale and speed of maritime vessels present escalating challenges to navigational safety. Perceiving the motions of vessels, identifying anomalies, and risk warnings are crucial. Central to addressing these challenges is the analysis of vessel trajectories, which are pivotal for anoma...
Saved in:
Main Authors: | Cheng, Ruke, Liang, Maohan, Li, Huanhuan, Yuen, Kum Fai |
---|---|
其他作者: | School of Civil and Environmental Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/180801 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Online dynamic ensemble deep random vector functional link neural network for forecasting
由: Gao, Ruobin, et al.
出版: (2024) -
Self-distillation for randomized neural networks
由: Hu, Minghui, et al.
出版: (2024) -
Short-term trajectory prediction using generative machine learning methods
由: Le, Thanh Ha, et al.
出版: (2021) -
New approach to daily and peak load predictions using a random vector functional-link network
由: Dash, P.K., et al.
出版: (2014) -
Trajectory prediction of dynamic obstacles in fleet management systems
由: Quintero, Dann Marko Gayanes
出版: (2024)