A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices
In this thesis, GaNAsSb-based optoelectronic device structures were grown using a solid-source molecular beam epitaxy (MBE) system in conjunction with a radio frequency (RF) plasma N source and Sb valved-cracker source. To reduce the nitrogen plasma induced defects, an ion deflection plate has been...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/42311 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-42311 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-423112023-07-04T17:06:06Z A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices Tan, Kian Hua Yoon Soon Fatt School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics In this thesis, GaNAsSb-based optoelectronic device structures were grown using a solid-source molecular beam epitaxy (MBE) system in conjunction with a radio frequency (RF) plasma N source and Sb valved-cracker source. To reduce the nitrogen plasma induced defects, an ion deflection plate has been installed. Four p-i-n GaNAsSb-based photodetectors have been grown using MBE for photoresponsivity measurement. The devices have shown photo-response up to a wavelength of 1380nm in the spectral response. The device with GaNAsSb layer grown at 350oC shows the highest DC responsivity of 12A/W. This high value of responsivity indicates a carrier avalanche process in the devices, even at reverse bias as low as 1V. In temporal response measurement, the device shows a pulse minimum full-width at half maximum (FWHM) of 40.5ps, corresponding to 3dB cutoff frequency of 4.5GHz. This frequency response is the highest ever reported for dilute nitride-based p-i-n photodetector. Furthermore, high speed data transmission at 5Gb/s has been demonstrated using this GaNAsSb-based p-i-n photodetector at wavelength of 1300nm. To further extend the photo-response from 1380nm to 1600nm, a GaNAsSb-based p-i-n waveguide photodetector has been grown using the molecular beam epitaxy. The device consists of a strained GaNAsSb photon-absorption layer, which has 3.5% of N and 18% of Sb. The device shows photo-response up to at least 1600nm in the spectral response. Moreover, photoresponsivity of 0.29A/W of the device at 1550nm was demonstrated. DOCTOR OF PHILOSOPHY (EEE) 2010-10-29T08:12:53Z 2010-10-29T08:12:53Z 2010 2010 Thesis Tan, K. H. (2010). A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/42311 10.32657/10356/42311 en 162 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics Tan, Kian Hua A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
description |
In this thesis, GaNAsSb-based optoelectronic device structures were grown using a solid-source molecular beam epitaxy (MBE) system in conjunction with a radio frequency (RF) plasma N source and Sb valved-cracker source. To reduce the nitrogen plasma induced defects, an ion deflection plate has been installed. Four p-i-n GaNAsSb-based photodetectors have been grown using MBE for photoresponsivity measurement. The devices have shown photo-response up to a wavelength of 1380nm in the spectral response. The device with GaNAsSb layer grown at 350oC shows the highest DC responsivity of 12A/W. This high value of responsivity indicates a carrier avalanche process in the devices, even at reverse bias as low as 1V. In temporal response measurement, the device shows a pulse minimum full-width at half maximum (FWHM) of 40.5ps, corresponding to 3dB cutoff frequency of 4.5GHz. This frequency response is the highest ever reported for dilute nitride-based p-i-n photodetector. Furthermore, high speed data transmission at 5Gb/s has been demonstrated using this GaNAsSb-based p-i-n photodetector at wavelength of 1300nm. To further extend the photo-response from 1380nm to 1600nm, a GaNAsSb-based p-i-n waveguide photodetector has been grown using the molecular beam epitaxy. The device consists of a strained GaNAsSb photon-absorption layer, which has 3.5% of N and 18% of Sb. The device shows photo-response up to at least 1600nm in the spectral response. Moreover, photoresponsivity of 0.29A/W of the device at 1550nm was demonstrated. |
author2 |
Yoon Soon Fatt |
author_facet |
Yoon Soon Fatt Tan, Kian Hua |
format |
Theses and Dissertations |
author |
Tan, Kian Hua |
author_sort |
Tan, Kian Hua |
title |
A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
title_short |
A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
title_full |
A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
title_fullStr |
A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
title_full_unstemmed |
A study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
title_sort |
study of dilute nitride-antimonide semiconductors for near infrared optoelectronics devices |
publishDate |
2010 |
url |
https://hdl.handle.net/10356/42311 |
_version_ |
1772825556292730880 |