On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems

Repetitive control and iterative learning control are both learning control schemes which update and refine control sequence using tracking errors in past trials. With the superior ability to handle system uncertainty and repetitive disturbance, repetitive control and iterative learning control have...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Tianqi
Other Authors: Wang Dan Wei
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/68556
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-68556
record_format dspace
spelling sg-ntu-dr.10356-685562023-07-04T16:31:04Z On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems Liu, Tianqi Wang Dan Wei School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Repetitive control and iterative learning control are both learning control schemes which update and refine control sequence using tracking errors in past trials. With the superior ability to handle system uncertainty and repetitive disturbance, repetitive control and iterative learning control have been applied to industry successfully in the past decades. The basic ideas of these two control schemes are similar to each other, but their analysis methods and applications are quite different.This thesis is divided into two parts , each of which focuses on the developments of repetitive control and iterative learning control, respectively. In PART I, a new parallel structure repetitive control scheme is proposed. This new repetitive controller realizes selective compensation on the targeted harmonics. Compared with the conventional methods, it achieves better tracking performance with less delay and computational burden. Furthermore, correction factors which modify the poles of conventional repetitive control in fractional cases are introduced. As a result, robust response is achieved in fractional cases where sampling frequency is not integer multiple of fundamental frequency. As an application, a high-performance grid simulator controlled by parallel structure fractional repetitive controller is designed and implemented. Experimental results testify the effectiveness of the proposed control scheme. In PART II, combination of neural network and iterative learning control is exploited to address system uncertainties and zero-error initial condition in nonlinear non-affine iterative learning control systems. In this new control scheme, a radial basis function neural network is adopted to estimate the effect of initial state on terminal output. With this estimation included in the control law, the proposed control method can drive nonlinear non-affine systems to track run-varying reference point in the presence of initial state variance. Stability and convergence of this method are proved and simulation results are provided to testify its effectiveness. DOCTOR OF PHILOSOPHY (EEE) 2016-05-26T09:11:38Z 2016-05-26T09:11:38Z 2016 Thesis Liu, T. (2016). On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/68556 10.32657/10356/68556 en 209 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Liu, Tianqi
On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems
description Repetitive control and iterative learning control are both learning control schemes which update and refine control sequence using tracking errors in past trials. With the superior ability to handle system uncertainty and repetitive disturbance, repetitive control and iterative learning control have been applied to industry successfully in the past decades. The basic ideas of these two control schemes are similar to each other, but their analysis methods and applications are quite different.This thesis is divided into two parts , each of which focuses on the developments of repetitive control and iterative learning control, respectively. In PART I, a new parallel structure repetitive control scheme is proposed. This new repetitive controller realizes selective compensation on the targeted harmonics. Compared with the conventional methods, it achieves better tracking performance with less delay and computational burden. Furthermore, correction factors which modify the poles of conventional repetitive control in fractional cases are introduced. As a result, robust response is achieved in fractional cases where sampling frequency is not integer multiple of fundamental frequency. As an application, a high-performance grid simulator controlled by parallel structure fractional repetitive controller is designed and implemented. Experimental results testify the effectiveness of the proposed control scheme. In PART II, combination of neural network and iterative learning control is exploited to address system uncertainties and zero-error initial condition in nonlinear non-affine iterative learning control systems. In this new control scheme, a radial basis function neural network is adopted to estimate the effect of initial state on terminal output. With this estimation included in the control law, the proposed control method can drive nonlinear non-affine systems to track run-varying reference point in the presence of initial state variance. Stability and convergence of this method are proved and simulation results are provided to testify its effectiveness.
author2 Wang Dan Wei
author_facet Wang Dan Wei
Liu, Tianqi
format Theses and Dissertations
author Liu, Tianqi
author_sort Liu, Tianqi
title On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems
title_short On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems
title_full On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems
title_fullStr On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems
title_full_unstemmed On parallel structure RC for better performance and NN based tilc for a class of nonlinear systems
title_sort on parallel structure rc for better performance and nn based tilc for a class of nonlinear systems
publishDate 2016
url https://hdl.handle.net/10356/68556
_version_ 1772825988630052864