Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments

Heavy lifting is an important task in petrochemical and pharmaceutical plants. It is frequently conducted during the time of plant construction, maintenance shutdown, and new equipment installation. Mobile cranes are lifting machines widely used in a variety of industries. The two primary issues tha...

Full description

Saved in:
Bibliographic Details
Main Author: Cai, Panpan
Other Authors: Zheng Jianmin
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/68893
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-68893
record_format dspace
spelling sg-ntu-dr.10356-688932023-03-11T17:44:25Z Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments Cai, Panpan Zheng Jianmin Cai Yiyu School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Heavy lifting is an important task in petrochemical and pharmaceutical plants. It is frequently conducted during the time of plant construction, maintenance shutdown, and new equipment installation. Mobile cranes are lifting machines widely used in a variety of industries. The two primary issues that industries concern are safety and productivity. Accidents may happen in work sites of mobile cranes due to various reasons such as lack of operation knowledge, lack of safety awareness, lack of information about the environment, inadequate guidance, and wrong calculations in lifting. These factors may also influence the productivity by wasting time, energy and resources in unnecessary operations or stoppages. Computer-aided Lift Planning (CALP) for mobile cranes is an effective and efficient tool highly desired by industries. This research aims to develop a new CALP system for automatic lift planning in complex industrial environments such as petrochemical and pharmaceutical plants, and construction sites. The research focuses on the lifting path planning problems for single and cooperative dual mobile cranes in these complex environments. The lifting path planning takes inputs such as plant environments, mechanical and positioning information of cranes, and start & end lifting configurations to generate optimal lifting paths by evaluating costs and risks involved. In this research, the single-crane and dual-crane lifting path planning are both formulated as multi-objective nonlinear optimization problems with multiple implicit constraints. The objective is to optimize the energy costs, time costs and safety factors of the lifting paths under constraints such as collision avoidance, coordination, and operational limitations. To solve the optimization problems, two master-slave parallel genetic algorithm based path planners are designed and developed on Graphic Processing Units (GPUs) using CUDA programming. The genetic algorithms in the planners are customized for the lifting path planning problems with their efficiency and search abilities improved. In order to handle complex environments, an image-based collision detection algorithm is developed to support the planners. The image-space parallel collision detection algorithm constructs multi-level depth maps for industrial environments and takes advantage of GPU parallel computing. Based on this algorithm, a hybrid C-space collision detection strategy is introduced to trade off the pre-processing and planning time for the planners. To reduce the computation time for continuous collision detection for the lifting target in dual-crane lifting path planning, triangle swept spheres are introduced to model the swept volumes. Finally, a lift planner cum crane simulator system is developed based on the collision detection algorithm and the path planners enhanced by a lexicographical goal programming strategy. This system can serve the purposes of automatic lift planning, interactive lift planning, and training, and thus improve the safety and productivity of lifting operations. DOCTOR OF PHILOSOPHY (MAE) 2016-07-12T06:34:19Z 2016-07-12T06:34:19Z 2016 Thesis Cai, P. (2016). Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/68893 10.32657/10356/68893 en 198 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Cai, Panpan
Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments
description Heavy lifting is an important task in petrochemical and pharmaceutical plants. It is frequently conducted during the time of plant construction, maintenance shutdown, and new equipment installation. Mobile cranes are lifting machines widely used in a variety of industries. The two primary issues that industries concern are safety and productivity. Accidents may happen in work sites of mobile cranes due to various reasons such as lack of operation knowledge, lack of safety awareness, lack of information about the environment, inadequate guidance, and wrong calculations in lifting. These factors may also influence the productivity by wasting time, energy and resources in unnecessary operations or stoppages. Computer-aided Lift Planning (CALP) for mobile cranes is an effective and efficient tool highly desired by industries. This research aims to develop a new CALP system for automatic lift planning in complex industrial environments such as petrochemical and pharmaceutical plants, and construction sites. The research focuses on the lifting path planning problems for single and cooperative dual mobile cranes in these complex environments. The lifting path planning takes inputs such as plant environments, mechanical and positioning information of cranes, and start & end lifting configurations to generate optimal lifting paths by evaluating costs and risks involved. In this research, the single-crane and dual-crane lifting path planning are both formulated as multi-objective nonlinear optimization problems with multiple implicit constraints. The objective is to optimize the energy costs, time costs and safety factors of the lifting paths under constraints such as collision avoidance, coordination, and operational limitations. To solve the optimization problems, two master-slave parallel genetic algorithm based path planners are designed and developed on Graphic Processing Units (GPUs) using CUDA programming. The genetic algorithms in the planners are customized for the lifting path planning problems with their efficiency and search abilities improved. In order to handle complex environments, an image-based collision detection algorithm is developed to support the planners. The image-space parallel collision detection algorithm constructs multi-level depth maps for industrial environments and takes advantage of GPU parallel computing. Based on this algorithm, a hybrid C-space collision detection strategy is introduced to trade off the pre-processing and planning time for the planners. To reduce the computation time for continuous collision detection for the lifting target in dual-crane lifting path planning, triangle swept spheres are introduced to model the swept volumes. Finally, a lift planner cum crane simulator system is developed based on the collision detection algorithm and the path planners enhanced by a lexicographical goal programming strategy. This system can serve the purposes of automatic lift planning, interactive lift planning, and training, and thus improve the safety and productivity of lifting operations.
author2 Zheng Jianmin
author_facet Zheng Jianmin
Cai, Panpan
format Theses and Dissertations
author Cai, Panpan
author_sort Cai, Panpan
title Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments
title_short Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments
title_full Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments
title_fullStr Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments
title_full_unstemmed Massively parallelized GA based optimal path planning for single and dual crane lifting in complex industrial environments
title_sort massively parallelized ga based optimal path planning for single and dual crane lifting in complex industrial environments
publishDate 2016
url https://hdl.handle.net/10356/68893
_version_ 1761781710073102336