Study on ultra-precision compliant mechanisms for nanotechnology applications
Including: 2 parts. Compliant mechanisms provide motion through elastic deformation under the action of external loads. These mechanisms are key functional members in many today's precision machines and devices, such as precision micro-positioning stages, micro actuators, microelectromechanical...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Research Report |
Published: |
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/6943 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Summary: | Including: 2 parts. Compliant mechanisms provide motion through elastic deformation under the action of external loads. These mechanisms are key functional members in many today's precision machines and devices, such as precision micro-positioning stages, micro actuators, microelectromechanical systems (MEMS) and robots, where micron or even nanometric resolution and accuracy are required for the motion. On the contrary to rigid-body mechanisms, compliant mechanisms consist of monolithic construction without rigid joints or sliders. Thus, they effectively eliminate the wear, backlash, lubrication, and friction problems, which are often encountered by rigid-body mechanisms. |
---|