Area selective atomic layer deposition (AS-ALD) for electronic device applications

Due to the continuous shrinking of microelectronic devices, nanoscale materials are being deposited and stacked into the high density multilayer structures (e.g. 3D-FETs, interconnects, core shell structures, etc). However, advanced and novel process methods are required for the fabrication of these...

Full description

Saved in:
Bibliographic Details
Main Author: Mayank Rajput
Other Authors: Nripan Mathews
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/73109
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-73109
record_format dspace
spelling sg-ntu-dr.10356-731092023-07-04T15:06:02Z Area selective atomic layer deposition (AS-ALD) for electronic device applications Mayank Rajput Nripan Mathews School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Due to the continuous shrinking of microelectronic devices, nanoscale materials are being deposited and stacked into the high density multilayer structures (e.g. 3D-FETs, interconnects, core shell structures, etc). However, advanced and novel process methods are required for the fabrication of these devices to meet the deposition of these materials for multilayer structures. Due to unique properties, such as conformality and uniformity, Atomic Layer Deposition (ALD) is a commonly used deposition method in the fabrication of these types of devices. In this work, we describe the area selective atomic layer deposition using self-assembled monolayers, SAMs (DDT, OTS, and ODTS) and atomic layer deposition (ALD). Area selective ALD (AS-ALD) can be used in advanced memory devices (e.g. flash memory, ReRAM, etc.) can also be realized with less number of fabrication steps as compared to traditional VLSI process. The main focus of this study was to perform selective atomic layer deposition of Diethyl Zinc (Precursor for ZnO) and Trimethyl Aluminium (Precursor for Al2O3) using Octyltrichloro silane (OTS), Octadecyltrichloro silane (ODTS) and Dodecyl Thiol (DDT) monolayers as resists. Metal-oxide patterns, metal-dielectric patterns were fabricated and blocking properties of these monolayers were investigated. All the experiments for this study were done on Si/SiO2-Cu and Si/SiO2 blanket substrates and Cu/Si-SiO2 micro-patterns. Throughout this study, we worked with alkyl silane SAMs (OTS and ODTS) and thiol (DDT) SAMs. Here, we used surface characterization techniques such as Water Contact Angle (WCA), Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) to study the SAMs and selective deposition. These results show that ODTS (~3.5nm) is more effective than OTS (2nm) in terms of blocking of Al2O3, and that DDT is good blocking agent for ZnO (15nm) as compared to Al2O3 (1.5nm). These results will be helpful for the selective deposition of materials on variety of patterns and 3-D structures such as capacitors, memory devices, transistors and core-shell structures, etc. Master of Science (Green Electronics) 2018-01-03T06:06:30Z 2018-01-03T06:06:30Z 2018 Thesis http://hdl.handle.net/10356/73109 en 78 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Mayank Rajput
Area selective atomic layer deposition (AS-ALD) for electronic device applications
description Due to the continuous shrinking of microelectronic devices, nanoscale materials are being deposited and stacked into the high density multilayer structures (e.g. 3D-FETs, interconnects, core shell structures, etc). However, advanced and novel process methods are required for the fabrication of these devices to meet the deposition of these materials for multilayer structures. Due to unique properties, such as conformality and uniformity, Atomic Layer Deposition (ALD) is a commonly used deposition method in the fabrication of these types of devices. In this work, we describe the area selective atomic layer deposition using self-assembled monolayers, SAMs (DDT, OTS, and ODTS) and atomic layer deposition (ALD). Area selective ALD (AS-ALD) can be used in advanced memory devices (e.g. flash memory, ReRAM, etc.) can also be realized with less number of fabrication steps as compared to traditional VLSI process. The main focus of this study was to perform selective atomic layer deposition of Diethyl Zinc (Precursor for ZnO) and Trimethyl Aluminium (Precursor for Al2O3) using Octyltrichloro silane (OTS), Octadecyltrichloro silane (ODTS) and Dodecyl Thiol (DDT) monolayers as resists. Metal-oxide patterns, metal-dielectric patterns were fabricated and blocking properties of these monolayers were investigated. All the experiments for this study were done on Si/SiO2-Cu and Si/SiO2 blanket substrates and Cu/Si-SiO2 micro-patterns. Throughout this study, we worked with alkyl silane SAMs (OTS and ODTS) and thiol (DDT) SAMs. Here, we used surface characterization techniques such as Water Contact Angle (WCA), Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) to study the SAMs and selective deposition. These results show that ODTS (~3.5nm) is more effective than OTS (2nm) in terms of blocking of Al2O3, and that DDT is good blocking agent for ZnO (15nm) as compared to Al2O3 (1.5nm). These results will be helpful for the selective deposition of materials on variety of patterns and 3-D structures such as capacitors, memory devices, transistors and core-shell structures, etc.
author2 Nripan Mathews
author_facet Nripan Mathews
Mayank Rajput
format Theses and Dissertations
author Mayank Rajput
author_sort Mayank Rajput
title Area selective atomic layer deposition (AS-ALD) for electronic device applications
title_short Area selective atomic layer deposition (AS-ALD) for electronic device applications
title_full Area selective atomic layer deposition (AS-ALD) for electronic device applications
title_fullStr Area selective atomic layer deposition (AS-ALD) for electronic device applications
title_full_unstemmed Area selective atomic layer deposition (AS-ALD) for electronic device applications
title_sort area selective atomic layer deposition (as-ald) for electronic device applications
publishDate 2018
url http://hdl.handle.net/10356/73109
_version_ 1772825599985844224