Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain
CRTC2 is potent transcriptional coactivator that undergoes robust nucleo-cytoplasmic shuttling to enhance CREB-mediated transcription in multiple cell types. In hepatocytes and pancreatic islet β-cells, CRTC2 responds to both glucose and incretin signals by activating CREB and upregulating the gen...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Doctor of Philosophy |
Language: | English |
Published: |
Nanyang Technological University
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/74944 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-74944 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-749442023-02-28T18:51:17Z Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain Lim, Wei Lee Ch’ng Toh Hean School of Biological Sciences thchng@ntu.edu.sg DRNTU::Science::Biological sciences::Biochemistry DRNTU::Science::Biological sciences::Molecular biology CRTC2 is potent transcriptional coactivator that undergoes robust nucleo-cytoplasmic shuttling to enhance CREB-mediated transcription in multiple cell types. In hepatocytes and pancreatic islet β-cells, CRTC2 responds to both glucose and incretin signals by activating CREB and upregulating the gene expression critical for glucose homeostasis. In the brain, CRTC2 is expressed in the hypothalamus and hippocampus. To date, the role for CRTC2 in the hippocampus has not been described. In this thesis, we provide evidence that CRTC2 mRNA and protein can be detected in the mouse hippocampus of neonates to adulthood. We show that the CRTC2 protein is localized in both neurons and astrocytes in various hippocampal preparations. However, unlike CRTC1, we provide evidence that CRTC2 in neurons do not undergo activity-dependent nuclear translocation. Chemical stimulation of acute brain slices to promote long-term potentiation (LTP) also did not trigger CRTC2 nuclear accumulation in hippocampal excitatory neurons. Finally, none of the metabolic stimuli we tested in neurons triggered nuclear accumulation of CRTC2. However, we show evidence that CRTC2 localized in hippocampal astrocytes respond to hypoglycemic conditions by accumulating in the nucleus. CRTC2 translocation corresponds to a robust increase in p-CREB133 levels which likely triggers transcription of CREB target genes associated with glycogen metabolism. Finally, we provide evidence that CRTC2 protein associates with the mitochondria and may serve to modulate expression of mitochondrial genes. Master of Science 2018-05-25T04:09:15Z 2018-05-25T04:09:15Z 2018 Thesis-Doctor of Philosophy Lim, W. L. (2018). Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain. Master's thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/74944 en 126 p. application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Biochemistry DRNTU::Science::Biological sciences::Molecular biology |
spellingShingle |
DRNTU::Science::Biological sciences::Biochemistry DRNTU::Science::Biological sciences::Molecular biology Lim, Wei Lee Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain |
description |
CRTC2 is potent transcriptional coactivator that undergoes robust nucleo-cytoplasmic shuttling to enhance CREB-mediated transcription in multiple cell types. In hepatocytes and pancreatic islet β-cells,
CRTC2 responds to both glucose and incretin signals by activating CREB and upregulating the gene expression critical for glucose homeostasis. In the brain, CRTC2 is expressed in the hypothalamus
and hippocampus. To date, the role for CRTC2 in the hippocampus has not been described. In this thesis, we provide evidence that CRTC2 mRNA and protein can be detected in the mouse hippocampus of
neonates to adulthood. We show that the CRTC2 protein is localized in both neurons and astrocytes in various hippocampal preparations.
However, unlike CRTC1, we provide evidence that CRTC2 in neurons do not undergo activity-dependent nuclear translocation. Chemical
stimulation of acute brain slices to promote long-term potentiation (LTP) also did not trigger CRTC2 nuclear accumulation in hippocampal excitatory neurons. Finally, none of the metabolic stimuli we tested in neurons triggered nuclear accumulation of CRTC2. However, we show evidence that CRTC2 localized in hippocampal astrocytes respond to
hypoglycemic conditions by accumulating in the nucleus. CRTC2 translocation corresponds to a robust increase in p-CREB133 levels which likely triggers transcription of CREB target genes associated with glycogen metabolism. Finally, we provide evidence that CRTC2 protein associates with the mitochondria and may serve to modulate
expression of mitochondrial genes. |
author2 |
Ch’ng Toh Hean |
author_facet |
Ch’ng Toh Hean Lim, Wei Lee |
format |
Thesis-Doctor of Philosophy |
author |
Lim, Wei Lee |
author_sort |
Lim, Wei Lee |
title |
Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain |
title_short |
Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain |
title_full |
Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain |
title_fullStr |
Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain |
title_full_unstemmed |
Uncovering the function of CREB regulated transcription coactivator 2 (CRTC2) in rodent brain |
title_sort |
uncovering the function of creb regulated transcription coactivator 2 (crtc2) in rodent brain |
publisher |
Nanyang Technological University |
publishDate |
2018 |
url |
http://hdl.handle.net/10356/74944 |
_version_ |
1759858342616891392 |