Manipulation task planning for heterogeneous object stacking based on reinforcement learning
The paper propose a new way of solving the Pallet Packing Problem by modelling it as a Markov decision process. This allows the program to make decisions step-by-step based only on the current state and adapt to any error in execution. By applying reinforcement learning techniques, an agent can be t...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/76393 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The paper propose a new way of solving the Pallet Packing Problem by modelling it as a Markov decision process. This allows the program to make decisions step-by-step based only on the current state and adapt to any error in execution. By applying reinforcement learning techniques, an agent can be trained from simulation to learn a model-free near-optimal policy that maximize the discounted cumulative rewards, which is proportional to the original objective function. Experiments show positive results on simulations involving packing up to 12 boxes into a grid-based pallet of size 8*8*6. |
---|