Binding of dsRNAs by PNAs containing Q, modified Q and 2-thio Uracil monomers

Peptide nucleic acids (PNAs) have been developed as chemical probes and therapeutic ligands in RNA duplex recognition. PNAs bind to ribonucleic acid (RNA) duplexes via complementary Hoogsteen hydrogen bonding to form PNA·RNA2 triplexes. In this study, modifications were made to chemically synthesize...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Lina Nur Lyana Abdul Rahim
مؤلفون آخرون: Chen Gang
التنسيق: Final Year Project
اللغة:English
منشور في: 2019
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/79017
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Peptide nucleic acids (PNAs) have been developed as chemical probes and therapeutic ligands in RNA duplex recognition. PNAs bind to ribonucleic acid (RNA) duplexes via complementary Hoogsteen hydrogen bonding to form PNA·RNA2 triplexes. In this study, modifications were made to chemically synthesize the PNA sequences incorporated with Q, modified Q and 2-thio Uracil monomers to target the inverted Watson-Crick C-G base pair present in RNA hairpins. By performing non-denaturing polyacrylamide gel electrophoresis experiment, the specific selectivity and binding interactions between the PNA oligomer and the RNA duplex could be studied. We demonstrated that modified Q monomer displayed a better binding affinity in recognizing C-G base pair than Q monomer due to the replacement of a 5-methyl group in Q with a 5-iodo group in modified Q monomer. In addition, incorporation with 2-thio Uracil brings stabilization to the triplex strands by improving the Hoogsteen hydrogen bonding and stacking interactions. Thus, enhancing the selective interaction with C-G inverted Watson-Crick base pair in RNA duplexes could be done through the combination of modified Q and 2-thio Uracil monomers in PNA sequences.