Total Ionizing Dose (TID) Effects on Finger Transistors in a 65nm CMOS Process
Although Total Ionizing Dose (TID) effects are generally unpronounced in deep-submicron-CMOS, we show the TID-induced leakage current @TID=500Krad is significant in NMOS-finger-transistors of GlobalFoundries 65nm CMOS. Further, Radiation-Hardening-By-Design techniques against said TID effect are re...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80395 http://hdl.handle.net/10220/41417 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Although Total Ionizing Dose (TID) effects are generally unpronounced in deep-submicron-CMOS, we show the TID-induced leakage current @TID=500Krad is significant in NMOS-finger-transistors of GlobalFoundries 65nm CMOS. Further, Radiation-Hardening-By-Design
techniques against said TID effect are recommended. |
---|