Butelase-mediated cyclization and ligation of peptides and proteins
Enzymes that catalyze efficient macrocyclization or site-specific ligation of peptides and proteins can enable tools for drug design and protein engineering. Here we describe a protocol to use butelase 1, a recently discovered peptide ligase, for high-efficiency cyclization and ligation of peptides...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84599 http://hdl.handle.net/10220/41879 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-84599 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-845992023-02-28T17:01:09Z Butelase-mediated cyclization and ligation of peptides and proteins Qiu, Yibo Nguyen, Giang Kien Truc Cao, Yuan Hemu, Xinya Liu, Chuan-Fa Tam, James Pingkwan School of Biological Sciences Butelase Cyclization Enzymes that catalyze efficient macrocyclization or site-specific ligation of peptides and proteins can enable tools for drug design and protein engineering. Here we describe a protocol to use butelase 1, a recently discovered peptide ligase, for high-efficiency cyclization and ligation of peptides and proteins ranging in size from 10 to >200 residues. Butelase 1 is the fastest known ligase and is found in pods of the common medicinal plant Clitoria ternatea (also known as butterfly pea). It has a very simple C-terminal-specific recognition motif that requires Asn/Asp (Asx) at the P1 position and a dipeptide His–Val at the P1′ and P2′ positions. Substrates for butelase-mediated ligation can be prepared by standard Fmoc (9-fluorenylmethyloxycarbonyl) chemistry or recombinant expression with the minimal addition of this tripeptide Asn–His–Val motif at the C terminus. Butelase 1 achieves cyclizations that are 20,000 times faster than those of sortase A, a commonly used enzyme for backbone cyclization. Unlike sortase A, butelase is traceless, and it can be used for the total synthesis of naturally occurring peptides and proteins. Furthermore, butelase 1 is also useful for intermolecular ligations and synthesis of peptide or protein thioesters, which are versatile activated intermediates necessary for and compatible with many chemical ligation methods. The protocol describes steps for isolation and purification of butelase 1 from plant extract using a four-step chromatography procedure, which takes ~3 d. We then describe steps for intramolecular cyclization, intermolecular ligation and butelase-mediated synthesis of protein thioesters. Butelase reactions are generally completed within minutes and often achieve excellent yields. NRF (Natl Research Foundation, S’pore) Accepted version 2016-12-16T08:57:09Z 2019-12-06T15:48:03Z 2016-12-16T08:57:09Z 2019-12-06T15:48:03Z 2016 Journal Article Nguyen, G. K. T., Qiu, Y., Cao, Y., Hemu, X., Liu, C. -F., & Tam, J. P. (2016). Butelase-mediated cyclization and ligation of peptides and proteins. Nature Protocols, 11(10), 1977-1988. 1754-2189 https://hdl.handle.net/10356/84599 http://hdl.handle.net/10220/41879 10.1038/nprot.2016.118 en Nature Protocols © 2016 Nature Publishing Group. This is the author created version of a work that has been peer reviewed and accepted for publication by Nature Protocols, Nature Publishing Group. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1038/nprot.2016.118]. 21 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Butelase Cyclization |
spellingShingle |
Butelase Cyclization Qiu, Yibo Nguyen, Giang Kien Truc Cao, Yuan Hemu, Xinya Liu, Chuan-Fa Tam, James Pingkwan Butelase-mediated cyclization and ligation of peptides and proteins |
description |
Enzymes that catalyze efficient macrocyclization or site-specific ligation of peptides and proteins can enable tools for drug design and protein engineering. Here we describe a protocol to use butelase 1, a recently discovered peptide ligase, for high-efficiency cyclization and ligation of peptides and proteins ranging in size from 10 to >200 residues. Butelase 1 is the fastest known ligase and is found in pods of the common medicinal plant Clitoria ternatea (also known as butterfly pea). It has a very simple C-terminal-specific recognition motif that requires Asn/Asp (Asx) at the P1 position and a dipeptide His–Val at the P1′ and P2′ positions. Substrates for butelase-mediated ligation can be prepared by standard Fmoc (9-fluorenylmethyloxycarbonyl) chemistry or recombinant expression with the minimal addition of this tripeptide Asn–His–Val motif at the C terminus. Butelase 1 achieves cyclizations that are 20,000 times faster than those of sortase A, a commonly used enzyme for backbone cyclization. Unlike sortase A, butelase is traceless, and it can be used for the total synthesis of naturally occurring peptides and proteins. Furthermore, butelase 1 is also useful for intermolecular ligations and synthesis of peptide or protein thioesters, which are versatile activated intermediates necessary for and compatible with many chemical ligation methods. The protocol describes steps for isolation and purification of butelase 1 from plant extract using a four-step chromatography procedure, which takes ~3 d. We then describe steps for intramolecular cyclization, intermolecular ligation and butelase-mediated synthesis of protein thioesters. Butelase reactions are generally completed within minutes and often achieve excellent yields. |
author2 |
School of Biological Sciences |
author_facet |
School of Biological Sciences Qiu, Yibo Nguyen, Giang Kien Truc Cao, Yuan Hemu, Xinya Liu, Chuan-Fa Tam, James Pingkwan |
format |
Article |
author |
Qiu, Yibo Nguyen, Giang Kien Truc Cao, Yuan Hemu, Xinya Liu, Chuan-Fa Tam, James Pingkwan |
author_sort |
Qiu, Yibo |
title |
Butelase-mediated cyclization and ligation of peptides and proteins |
title_short |
Butelase-mediated cyclization and ligation of peptides and proteins |
title_full |
Butelase-mediated cyclization and ligation of peptides and proteins |
title_fullStr |
Butelase-mediated cyclization and ligation of peptides and proteins |
title_full_unstemmed |
Butelase-mediated cyclization and ligation of peptides and proteins |
title_sort |
butelase-mediated cyclization and ligation of peptides and proteins |
publishDate |
2016 |
url |
https://hdl.handle.net/10356/84599 http://hdl.handle.net/10220/41879 |
_version_ |
1759856273933729792 |