Secure dynamic state estimation by decomposing Kalman filter
We consider the problem of estimating the state of a linear time-invariant Gaussian system in the presence of sparse integrity attacks. The attacker can control p out of m sensors and arbitrarily change the measurements. Under mild assumptions, we can decompose the optimal Kalman estimate as a weigh...
Saved in:
Main Authors: | Liu, Xinghua, Mo, Yilin, Garone, Emanuele |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/87830 http://hdl.handle.net/10220/46831 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
A sensorless state estimation for a safety-oriented cyber-physical system in urban driving : deep learning approach
由: Mohammad Al-Sharman, et al.
出版: (2021) -
Robust dynamic state estimation for power system based on generalized correntropy loss function and unscented Kalman filter
由: Chen, Tengpeng, et al.
出版: (2025) -
Finite time attack detection and supervised secure state estimation for CPSs with malicious adversaries
由: Ao, Wei, et al.
出版: (2020) -
Distributed secure state estimation and control for CPSs under sensor attacks
由: Ao, Wei, et al.
出版: (2021) -
Sensor selection for remote state estimation with QoS requirement constraints
由: Yang, Huiwen, et al.
出版: (2023)