A fast non-Monte-Carlo yield analysis and optimization by stochastic orthogonal polynomials

Performance failure has become a significant threat to the reliability and robustness of analog circuits. In this article, we first develop an efficient non-Monte-Carlo (NMC) transient mismatch analysis, where transient response is represented by stochastic orthogonal polynomial (SOP) expansion unde...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Tan, Sheldon X. D., Ren, Junyan, He, Lei, Gong, Fang, Liu, Xuexin, Yu, Hao
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2012
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/95526
http://hdl.handle.net/10220/8763
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Performance failure has become a significant threat to the reliability and robustness of analog circuits. In this article, we first develop an efficient non-Monte-Carlo (NMC) transient mismatch analysis, where transient response is represented by stochastic orthogonal polynomial (SOP) expansion under PVT variations and probabilistic distribution of transient response is solved. We further define performance yield and derive stochastic sensitivity for yield within the framework of SOP, and finally develop a gradient-based multiobjective optimization to improve yield while satisfying other performance constraints. Extensive experiments show that compared to Monte Carlo-based yield estimation, our NMC method achieves up to 700X speedup and maintains 98% accuracy. Furthermore, multiobjective optimization not only improves yield by up to 95.3% with performance constraints, it also provides better efficiency than other existing methods.