Sensing margin enhancement techniques for ultra-low-voltage SRAMs utilizing a bitline-boosting current and equalized bitline leakage
A small bitline sensing margin is one of the most challenging design obstacles for reliable ultra-low-voltage static random access memory (SRAM) implementation. This paper presents design techniques for bitline sensing margin enhancement using decoupled SRAMs. The proposed bitline-boosting current s...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95955 http://hdl.handle.net/10220/11361 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A small bitline sensing margin is one of the most challenging design obstacles for reliable ultra-low-voltage static random access memory (SRAM) implementation. This paper presents design techniques for bitline sensing margin enhancement using decoupled SRAMs. The proposed bitline-boosting current scheme improves the bitline sensing margin at a given bitline configuration. The bitline sensing margin can be further augmented by equalizing bitline leakage. Simulation using a 40-nm CMOS process shows that the proposed techniques achieve larger bitline sensing margin, wider operating temperature and supply range, and a larger number of cells per bitline. |
---|