Neighborhood repulsed metric learning for kinship verification
Kinship verification from facial images is a challenging problem in computer vision, and there is a very few attempts on tackling this problem in the literature. In this paper, we propose a new neighborhood repulsed metric learning (NRML) method for kinship verification. Motivated by the fact that i...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/98388 http://hdl.handle.net/10220/12489 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Kinship verification from facial images is a challenging problem in computer vision, and there is a very few attempts on tackling this problem in the literature. In this paper, we propose a new neighborhood repulsed metric learning (NRML) method for kinship verification. Motivated by the fact that interclass samples (without kinship relations) with higher similarity usually lie in a neighborhood and are more easily misclassified than those with lower similarity, we aim to learn a distance metric under which the intraclass samples (with kinship relations) are pushed as close as possible and interclass samples lying in a neighborhood are repulsed and pulled as far as possible, simultaneously, such that more discriminative information can be exploited for verification. Moreover, we propose a multiview NRM-L (MNRML) method to seek a common distance metric to make better use of multiple feature descriptors to further improve the verification performance. Experimental results are presented to demonstrate the efficacy of the proposed methods. |
---|