Action selection for composable modular deep reinforcement learning
In modular reinforcement learning (MRL), a complex decision making problem is decomposed into multiple simpler subproblems each solved by a separate module. Often, these subproblems have conflicting goals, and incomparable reward scales. A composable decision making architecture requires that even t...
محفوظ في:
المؤلفون الرئيسيون: | GUPTA, Vaibhav, ANAND, Daksh, PARUCHURI, Praveen, KUMAR, Akshat |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6900 https://ink.library.smu.edu.sg/context/sis_research/article/7903/viewcontent/Action_Selection_for_Composable_Modular_Deep_Reinforcement_Learning.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Action selection for composable modular deep reinforcement learning
بواسطة: GUPTA, Vaibhav, وآخرون
منشور في: (2021) -
Towards Explaining Sequences of Actions in Multi-Agent Deep Reinforcement Learning Models
بواسطة: KHAING, Phyo Wai, وآخرون
منشور في: (2023) -
Goal modelling for deep reinforcement learning agents
بواسطة: Leung, Jonathan, وآخرون
منشور في: (2022) -
Knowledge Transfer for Deep Reinforcement Learning with Hierarchical Experience Replay
بواسطة: Yin, Haiyan, وآخرون
منشور في: (2017) -
Deep reinforcement learning for soft, flexible robots: Brief review with impending challenges
بواسطة: Bhagat, S., وآخرون
منشور في: (2021)