Insights into accuracy of social scientists' forecasts of societal change

How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, politic...

全面介紹

Saved in:
書目詳細資料
Main Authors: GROSSMA, Igor, HARTANTO, Andree, MAJEED, Nadyanna M., See comments for full list of authors, et al
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2023
主題:
在線閱讀:https://ink.library.smu.edu.sg/soss_research/3747
https://ink.library.smu.edu.sg/context/soss_research/article/5005/viewcontent/Grossmann_et_al.preprint.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender-career and racial bias. Following provision of historical trend data on the domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N=86 teams/359 forecasts), with an opportunity to update forecasts based on new data six months later (Tournament 2; N=120 teams/546 forecasts). Benchmarking forecasting accuracy revealed that social scientists’ forecasts were on average no more accurate than simple statistical models (historical means, random walk, or linear regressions) or the aggregate forecasts of a sample from the general public (N=802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models, and based predictions on prior data.